

Transponder-Antenne HG G-71915-A

1-dimensional | USB CAN-Bus (HG G-71915ZA) oder PROFINET® (HG G-71915YA)

Führung durch Innovation

www.goetting.de

Zusammenfassung

Grundlegende Eigenschaften der Transponder-Antenne HG G-71915-A:

_		
	Transponder-Antenne zur Positio- nierung von fahrerlosen Transport- fahrzeugen (FTF)	 max. Überfahrgeschwindigkeit 2,0 m/s Steckverbinder 3x M12
	 Ausgabe von Transpondercode (über den Bus) und PosiPuls (Bus und digital) 	Datenschnittstelle: Je nach Variante CAN Basic / CAN Extended / CANo- pen® oder PROFINET®
	Betriebsfrequenz 128 kHz	• Serviceschnittstelle: USB zur Konfi-
	• Schutzart IP 65	guration
	 Leseabstand 5-80 mm (abhängig vom Transponder) 	Anzeige Betriebszustand über LEDs, die die Fahrbahn anleuchten
۱	• Spannungsversorgung 18 – 30 VDC	Transponder-Programmierung

© 2023 Götting KG, Irrtümer und Änderungen vorbehalten.

Die Götting KG in D-31275 Lehrte besitzt ein zertifiziertes Qualitätssicherungssystem gemäß ISO 9001.

Inhalt

1	Über dieses Dokument	6
1.1	Gültigkeit	6
1.1.1	Zielgruppe	6
1.1.2	Mitgeltende Unterlagen	6
1.2	Konformitätserklarung	/
1.3	Darstellung von Informationen	/
1.3.1 1.3.2	Symbolo	/ م
1.3.2 1 <i>4</i>	Varianten	0 Q
1.5	Definitionen	
1.5.1	Lese- und Montageseite	9
1.5.2	Koordinatensystem der Antenne	
1.6	Abkürzungen	
2	Sicherheitshinweise	
2.1	Bestimmungsgemäße Verwendung	11
2.2	Nicht bestimmungsgemäße Verwendung	
2.3	Qualifikation der Benutzer	
2.4	Allgemeine Sicherheitshinweise	
2.5	Pflichten des Betreibers	13
3	Lieferumfang	14
31	Notwendiges Zubehör	
3.2	Optionales Zubehör	
4	Covëtoëbovoisht	10
4	Geraleupersicni	10
4.1 4.2	System Komponenten im Reden: Transponder	10 17
4.2	Transponder-Antenne	
-	Funktioneuroice	10
)	Positions weise	19
5.1 5.2	Positionserkennung mit Transpondern	
0.2		20
6	Lagerung	21
7	Montage	22
7.1	Transponder montieren	
7.1.1	Betriebsbedingungen für Transponder	22
7.2	Anschlusskabel vorbereiten	23
7.2.1	Alle Varianten: X1 (Power) anschließen	23
7.2.2	Variante HG G-71915ZA – CAN-Bus: X2 & X3 anschließen	
7.2.3	Variante HG G-/1915YA – PROFINE I *: X2 & X3 anschließen	
/.J	Alle Varianten: Transponder-Antenne montieren	
7.3.⊥ 720	Abetand zwischen Antenne und Transponder	20 25
7.3.Z 733	Mindestabilitation zwischen beugleichen Transponder Antennen	20 25
7.3.3	Minuestabstand zwischen baugierenen Transponder und Antenne	25 25
7341	Kleinere metallische Strukturen, die keine Schleifen hilden	26 26
7342	Geschlossene metallische oder elektrisch leitende Strukturen	20 26
735		20 77
7.36	Montage / Antenne am Eahrzeug befestigen	27 27
7.3.7	Antenne einschalten	
0	Inhotrichnohmo	00
0 8 1	Antenne mit einem Computer verhinden	29 20
0.1 8.2	Terminalnrogramm einstellen	29 ۲۸
0.2		

8.3	Antenne einstellen (Service-Schnittstelle)	31
8.3.1	Parameter einstellen	31
8.3.2	Störeinflüsse minimieren	31
8.4	Indetriednanme adschließen	32
9	System über die Service-Schnittstelle konfigurieren	33
9.1	Service-Schnittstelle starten	33
9.2	Service-Schnittstelle bedienen	33
9.2.1	Grundmenü	34
9.2.2	1: Reader Config	36
9.2.3	NUR VARIANTE HG G-/1915ZA: 2: CAN CONTIG	3/
9.2.3.1	CAN-2.0A / 2.0B	37
9.2.3.2		38
9.2.4	5: Save Comig	30 20
9.2.5	3. Flogram Hansponder	39 20
927	C: Clear Data	40
9.2.8	U: Firmware Update	40
10		
10		41
10.1	PosiPuls (Positionierimpuls)	41
10.2	Variante HC C 710157A: CAN Rue	42 10
10.3	CAN Grundlagen	42 42
10.3.2	CAN 2 0A und CAN 2 0B	43
10.3.2.	1 Empfangsbox Transponder-Programmierung (Fahrzeugrechner –> Trans-	
	ponder-Antenne)	43
10.3.2.	2 Sendebox 1 PosiPuls (Transponder-Antenne -> Fahrzeugrechner)	43
10.3.2.	3 Sendebox 2 Status & Code (Transponder-Antenne -> Fahrzeugrechner)	43
10.3.2.	4 Sendebox 3 Pegel & Zähler (Transponder-Antenne -> Fahrzeugrechner)	44
10.3.3	CANopen [®]	44
10.3.3.	1 Betriebsarten und -zustände	45
10.3.3.	2 EDS-Datei	46
10.3.3.	3 Voreinstellungen	46
10.3.3.	4 Beschreibung der Prozessdaten Objekte (PDO)	46
10.3.3.	5 TxPDO_1 Status & Code (Transponder-Antenne -> Fahrzeugrechner)	46
10.3.3.	6 TxPDO_2 Pegel & Zähler (Transponder-Antenne -> Fahrzeugrechner)	47
10.3.3.	7 RxPDO_1 Transponder-Programmierung (Fahrzeugrechner -> Transpon-	
	der-Antenne)	47
10.3.3.	8 Heartbeat	47
10.3.3.	9 Beschreibung der Servicedaten Objekte (SDOs)	48
10.3.3.	10 Objektverzeichnis	48
10.3.3.	11 CANopen® Directory	50
10.4	Variante HG G-71915YA: PROFINET®	54
10.4.1	Input Bytes	54
10.4.2	Output Bytes	55
10.4.3	GSDML Filo	55
10.4.4		
11	Transponder-Programmierung	56
11.1	Programmierung über die Service-Schnittstelle	56
11.2	Programmierung über die Bus-Schnittstelle	56
12	Firmware der Antenne aktualisieren	57
13	Wartung	59
14	Entsorgung	60
15	Fehlersuche	61
15.1	Fehlertabelle	61
15.2	Fehlercodes (LEDs)	62

16 16.1 16.2	Technische Daten Kompatible Transpondertypen und Leseabstände Elektromagnetische Verträglichkeit (EMV)	.63 64 64
17	Abbildungsverzeichnis	.65
18	Tabellenverzeichnis	.66
19	Stichwortverzeichnis	.68
20	Dokumenten-Historie	.70
21	Hinweise	.71
21.1	Urheberrechte	71
21.2	Haftungsausschluss	71
21.3	Markenzeichen und Firmennamen	71

Über dieses Dokument

1.1 Gültigkeit

Diese Gerätebeschreibung gilt für die Transponder-Antenne HG G-71915-A.

Sie enthält Informationen zur korrekten Montage, Elektroinstallation, Inbetriebnahme, zum Betrieb, zur Wartung und zur Störungsbeseitigung.

Diese Gerätebeschreibung bezieht sich auf Geräte ab der Firmware 1.00 (siehe Bild 16 auf Seite 34).

1.1.1 Zielgruppe

Diese Gerätebeschreibung richtet sich

- an Entwickler, Hersteller oder Betreiber von Anlagen, die bewegte Teile positionieren oder Fahrzeuge mit Unterstützung der Transponder-Antenne HG G-71915-A automatisiert führen wollen,
- an technisches Personal eines Herstellers, der die Transponder-Antenne in ein Fahrerloses Transportfahrzeug (FTF) integrieren oder die RFID-basierte Positionserkennung und Identifikationsfunktion anderweitig nutzen möchte,
- an qualifizierte Personen, die die Transponder-Antenne in ein Fahrzeug oder in einen mobilen Roboter integrieren, erstmals in Betrieb nehmen oder konfigurieren.

1.1.2 Mitgeltende Unterlagen

Diese Gerätebeschreibung umfasst keine Informationen zur Bedienung des übergeordneten Systems, z. B. eines Fahrerlosen Transportfahrzeugs (FTF), in das die Transponder-Antenne integriert wird.

Nehmen Sie die Transponder-Antenne erst in Betrieb, wenn Ihnen die Betriebsanleitung des Herstellers bzw. des Anlagenbetreibers vorliegt und Sie diese gelesen und verstanden haben.

Ergänzende Dokumente erhalten Sie auf Anfrage oder direkt über unsere Internetseiten. Der nebenstehende QR-Code führt Sie auf unsere Startseite <u>www.goetting.de</u>. Die folgenden Links verweisen auf konkrete Produktseiten.

- Scheiben-Transponder HW DEV00095/00098 <u>http://www.goetting.de/komponenten/00095</u>
- Stab-Transponder HG G-71325XA http://www.goetting.de/komponenten/71325
- Transponder-Programmiergerät HG G-81840ZA <u>http://www.goetting.de/komponenten/81840</u>
- Anschluss-Box M12/USB HG G-20960ZA http://www.goetting.de/komponenten/20960

1.2 Konformitätserklärung

Das Produkt HG G-71915-A erfüllt die einschlägigen Harmonisierungsrechtsvorschriften der Europäischen Union. Zur Beurteilung der Konformität wurden die in der Konformitätserklärung genannten einschlägigen harmonisierten europäischen Normen und Richtlinien herangezogen.

Die EU-Konformitätserklärung können Sie bei der Götting KG anfordern oder unter folgendem Link herunterladen.

https://www.goetting.de/komponenten/71915

1.3 Darstellung von Informationen

Damit Sie mit dieser Gerätebeschreibung schnell und sicher mit Ihrem Produkt arbeiten können, werden einheitliche Warnhinweise, Symbole, Begriffe und Abkürzungen verwendet. Zum besseren Verständnis sind diese in den folgenden Kapiteln erklärt.

1.3.1 Warnhinweise

In dieser Gerätebeschreibung stehen Warnhinweise vor einer Handlungsabfolge, bei der die Gefahr von Personen- oder Sachschäden besteht. Die beschriebenen Maßnahmen zur Gefahrenabwehr müssen eingehalten werden.

Warnhinweise sind wie folgt aufgebaut:

Art oder Quelle der Gefahr

Folgen

- ► Gefahrenabwehr
- Das Warnzeichen (Warndreieck) macht auf Lebens- oder Verletzungsgefahr aufmerksam.
- Das Signalwort gibt die Schwere der Gefahr an.
- Der Absatz Art oder Quelle der Gefahr benennt die Art oder Quelle der Gefahr.
- Der Absatz Folgen beschreibt die Folgen bei Nichtbeachtung des Warnhinweises.
- Die Absätze **Gefahrenabwehr** geben an, wie man die Gefahr umgehen kann.

Die Signalwörter haben folgende Bedeutung:

 Tabelle 1
 Gefahrenklassen nach ANSI Z535.6-2006

Warnzeichen, Signalwort Bedeutung		
GEFAHR	GEFAHR kennzeichnet eine gefährliche Situation, in der Tod oder schwere Verletzungen eintreten werden, wenn sie nicht vermieden wird.	
WARNUNG	WARNUNG kennzeichnet eine gefährliche Situation, in der Tod oder schwere Verletzungen eintreten kön- nen, wenn sie nicht vermieden wird.	
	VORSICHT kennzeichnet eine gefährliche Situation, in der leichte bis mittelschwere Verletzungen eintre- ten können, wenn sie nicht vermieden wird.	
ACHTUNG	ACHTUNG kennzeichnet Sachschäden: Das Produkt oder die Umgebung können beschädigt werden.	

1.3.2 Symbole

In dieser Gerätebeschreibung werden folgenden Symbole und Auszeichnungen verwendet:

Wenn diese Information nicht beachtet wird, kann das Produkt nicht optimal genutzt bzw. betrieben werden.

Weist auf einen oder mehrere Links im Internet hin.

- <u>www.goetting.de/xxx</u>
- www.goetting.de/yyy

Weist auf Tipps für den leichteren Umgang mit dem Produkt hin.

- Der Haken zeigt eine Voraussetzung an.
- Der Pfeil zeigt einen Handlungsschritt an.
 Die Einrückung zeigt das Ergebnis einer Handlung oder einer Handlungssequenz an.
- Programmtexte und -variablen werden durch Verwendung einer Schriftart mit fester Buchstabenbreite hervorgehoben.
- Menüpunkte und Parameter werden kursiv dargestellt.
- Wenn für Eingaben bei der Bedienung von Programmen Tastenkombinationen verwendet werden, dann werden dazu jeweils die benötigten Iasten
 Hervorgehoben. Bei den Programmen der Götting KG können Sie üblicherweise große und kleine Buchstaben gleichwertig verwenden.

9

1.4 Varianten

Die Transponder-Antenne ist in zwei Varianten erhältlich.

 Tabelle 2
 Varianten-Übersicht

Bestell-Nr.		Ausstattung
HC C 71015	ZA	Datenschnittstelle: CAN Basic / CAN Extended / CANopen®
110 0-7 1913	YA	Datenschnittstelle: PROFINET®

1.5 Definitionen

1.5.1 Lese- und Montageseite

- Die Gehäuse-Oberseite ist die *Montageseite*, mit der die Antenne z. B. am Fahrzeug montiert wird.
- Der transparente Deckel ist die *Leseseite*, die zum Transponder zeigen muss. Bei Montage unter einem FTF zeigt sie zum Boden.

Bild 1 Lese- und Montageseite der Transponder-Antenne

1.5.2 Koordinatensystem der Antenne

Die in dieser Gerätebeschreibung angegebenen Vorzeichen und Koordinatenbezeichnungen sind wie in folgendem Bild festgelegt.

Bild 2 Polarität der Ausgabe (für Vorzeichen- und Koordinatenausgabe)

Die Farben im Bild zeigen, wie jeweils alle LEDs der Transponder-Antenne leuchten, wenn sich ein Transponder unter den entsprechenden Abschnitten befindet. Weitere Informationen finden Sie in Abschnitt 5.2 auf Seite 20.

1.6 Abkürzungen

 Tabelle 3
 Abkürzungen

i

Abkürzung	Bedeutung
CAN	Controller Area Network
CANopen [®]	Controller Area Network open
EDS	Electronic Data Sheet
FTF	Fahrerloses Transportfahrzeug
PDO	Process Data Object
PROFINET®	PROFINET® IO-Device gemäß IEC 61158
RFID	Radio-Frequency Identification
SDO	Service Data Object
SPS	Speicherprogrammierbare Steuerung oder PC, der Steue- rungsfunktionen übernimmt

Sicherheitshinweise

Das Produkt wurde gemäß den allgemein anerkannten Regeln der Technik hergestellt. Trotzdem besteht die Gefahr von Personen- und Sachschäden, wenn Sie dieses Kapitel und die Sicherheitshinweise in dieser Dokumentation nicht beachten.

- Lesen Sie diese Dokumentation gründlich und vollständig, bevor Sie mit dem Produkt arbeiten.
- Bewahren Sie die Dokumentation so auf, dass sie jederzeit f
 ür alle Benutzer zug
 änglich ist.
- Geben Sie das Produkt an Dritte stets zusammen mit den erforderlichen Dokumentationen weiter.

2.1 Bestimmungsgemäße Verwendung

Die Transponder-Antenne HG G-71915-A ist von ihrem Funktionsprinzip her dafür ausgelegt, die relative Position zu passenden RFID-Marken (Transpondern) zu berechnen und an eine übergeordnete Steuerung auszugeben. Entweder die Transponder oder die Antenne müssen dabei an einer fixen Position sein. Mögliche Anwendungsfälle sind:

- Positionserkennung eines Fahrerlosen Transportfahrzeugs (FTF), d. h. die Antenne bewegt sich und die Transponder sind an einer fixen Position.
- Positionserkennung von bewegten Teilen (z. B. an mobilen Robotern oder Elektrohängebahnen), d. h. die Transponder bewegen sich, die Antenne ist an einer fixen Position.

Einsatzbereich der Transponder-Antenne HG G-71915-A ist die Positionserkennung von Fahrerlosen Transportfahrzeugen (FTF).

Die Transponder-Antenne HG G-71915-A darf nur von fachkundigem Personal an dem Einsatzort (z. B. Fahrzeug) verwendet werden, an dem sie gemäß dieser Gerätebeschreibung von befähigtem Personal montiert und erstmals in Betrieb genommen wurde. Dabei sind die in dieser Gerätebeschreibung genannten Betriebsbedingungen einzuhalten.

Die Transponder-Antenne HG G-71915-A beinhaltet keinerlei Sicherheitseinrichtungen und darf daher ausschließlich in Anwendungen eingesetzt werden, bei denen der Hersteller oder der Anlagenbetreiber dafür gesorgt haben, dass ausreichende Maßnahmen zum Personenschutz und zur sicheren Erkennung von Hindernissen umgesetzt werden.

2.2 Nicht bestimmungsgemäße Verwendung

Jeder andere Gebrauch als in der bestimmungsgemäßen Verwendung beschrieben ist nicht bestimmungsgemäß und deshalb unzulässig.

Für Schäden bei nicht bestimmungsgemäßer Verwendung übernimmt die Götting KG keine Haftung. Die Risiken bei nicht bestimmungsgemäßer Verwendung liegen allein beim Benutzer.

Zur nicht bestimmungsgemäßen Verwendung des Produkts gehört:

- die Verwendung der Transponder-Antenne in Fahrzeugen, die nicht mit Sicherheitseinrichtungen zum Personenschutz und zur sicheren Erkennung von Hindernissen ausgestattet sind.
- Ein Verlassen der Spur oder das Auftauchen einer Person oder eines Hindernisses im Gefahrenbereich müssen jederzeit sicher erkannt werden und es muss für ein sofortiges Stoppen von bewegten Teilen (z. B. Fahrzeugen) gesorgt werden, um Sach- oder Personenschäden auszuschließen.

2.3 Qualifikation der Benutzer

Die in diesem Dokument beschriebenen Tätigkeiten erfordern grundlegende Kenntnisse der Mechanik und Elektrik sowie Kenntnisse der zugehörigen Fachbegriffe. Um die sichere Verwendung zu gewährleisten, dürfen diese Tätigkeiten daher nur von einer entsprechenden Fachkraft oder einer unterwiesenen Person unter Leitung einer Fachkraft durchgeführt werden.

Eine Fachkraft ist, wer aufgrund seiner fachlichen Ausbildung, seiner Kenntnisse und Erfahrungen sowie seiner Kenntnisse der einschlägigen Bestimmungen die ihm übertragenen Arbeiten beurteilen, mögliche Gefahren erkennen und geeignete Sicherheitsmaßnahmen treffen kann. Eine Fachkraft muss die einschlägigen fachspezifischen Regeln einhalten.

Das für die Montage, Inbetriebnahme und Konfiguration der Transponder-Antenne vorgesehene Personal

- hat diese Gerätebeschreibung zur Verfügung gestellt bekommen.
- ist mit der Funktionsweise des übergeordneten Systems (z. B. einem Fahrzeug) vertraut.
- ist zur Ausführung seiner T\u00e4tigkeiten bef\u00e4higt und in ausreichendem Umfang in der Montage und Konfiguration der Transponder-Antenne geschult, wenn dies Teil seiner T\u00e4tigkeiten ist.
- ist f
 ür den Fall, dass die CAN Bus-Schnittstelle zum Einsatz kommen soll mit der Inbetriebnahme von und dem Telegrammaustausch
 über CAN Bus-Verbindungen vertraut.
- ist f
 ür den Fall, dass die PROFINET®-Schnittstelle zum Einsatz kommen soll mit der Inbetriebnahme von und dem Telegrammaustausch
 über PROFINET®-Verbindungen vertraut.
- kennt für den Fall, dass die Transponder-Antenne zur Positionserkennung von automatisierten Fahrzeugen zum Einsatz kommen soll – die von einem Fahrerlosen Transportfahrzeug (FTF) ausgehenden Gefahren und ist im Umgang mit dem Fahrzeug und gegebenenfalls nötigen Sicherheitsvorkehrungen ausreichend unterwiesen, um den arbeitssicheren Zustand des Systems zu beurteilen.
- kennt für den Fall, dass andere Geräte oder Systeme mit bewegten Teilen zum Einsatz kommen – die von dem Anwendungsfall ausgehenden Risiken und ist in den gegebenenfalls nötigen Sicherheitsvorkehrungen ausreichend unterwiesen, um den arbeitssicheren Zustand des Systems zu beurteilen.

2.4 Allgemeine Sicherheitshinweise

• Stellen Sie sicher, dass die Transponder-Antenne HG G-71915-A ausschließlich in Anwendungen eingesetzt wird,

- bei denen ausreichende Ma
 ßnahmen zum Personenschutz und zur sicheren Erkennung von Hindernissen umgesetzt sind und
- die ein Verlassen der Spur oder das Auftauchen einer Person oder eines Hindernisses im Gefahrenbereich jederzeit sicher erkennen und alle bewegten Teile (z. B. Fahrzeuge) sofort stoppen.
- Stellen Sie sicher, dass Störeinflüsse im Boden oder am Fahrzeug ohne vorhandenen Transponder keinen höheren Pegel (Level) als 100 beim Summen- und Differenzsignal in der Antenne auslösen und dass alle Transponder mit einem ausreichend hohen Abstand zu diesem Signal gelesen werden. Ansonsten kann es zu Fehllesungen oder nicht erkannten Transpondern kommen.
- Montieren Sie die Transponder-Antenne so fest am Fahrzeug, dass sich ihre Position bei normalem Betrieb nicht verändern kann. Ansonsten werden die Positionsdaten vom übergeordneten System falsch ausgewertet und das Fahrzeug kann neben der Spur fahren.
- Obwohl Verschmutzungen keinen Einfluss auf die Positionserkennung selbst haben, sollte die Transponder-Antenne vor Verschmutzungen und Nässe (z. B. Spritzwasser von den Rädern des Fahrzeugs) geschützt und regelmäßig gereinigt werden, da sonst der Verschleiß an der Antenne steigt.

2.5 Pflichten des Betreibers

Der Betreiber muss beim Einsatz der Transponder-Antenne sicherstellen, dass

- alle Personen im Einflussbereich einer automatisierten Anlage (z. B. Fahrerloses Transportfahrzeug (FTF)) über die Art der Anwendung und die damit verbundenen Gefahren unterrichtet sind,
- die in dieser Gerätebeschreibung genannten Betriebsbedingungen eingehalten werden,
- die Transponder-Antenne sich in einem technisch einwandfreien Zustand befindet.

Der Betreiber darf die Transponder-Antenne nicht eigenmächtig verändern oder umbauen. Andernfalls erlischt die Betriebserlaubnis.

3

Lieferumfang

Zum Lieferumfang gehören:

- eine Transponder-Antenne HG G-71915-A
- diese Gerätebeschreibung in elektronischer Form, verfügbar unter folgender Adresse:

i

i

www.goetting.de/komponenten/71915

3.1 Notwendiges Zubehör

Die Transponder-Antenne allein ist nicht ausreichend für die Positionserkennung von Fahrzeugen mit Transpondern.

Um ein fahrerloses Transportsystem zu betreiben benötigen Sie außerdem:

- ein Anschlusskabel zur Verbindung der Antenne mit der Fahrzeugelektronik,
- mehrere Transponder im Boden.

Die Anschlusskabel können vom Kunden selbst konfektioniert (s. 7.2 "Anschlusskabel vorbereiten" auf Seite 23) oder über die Götting KG bestellt werden (s. u.).

Entnehmen Sie Tabelle 4 die Bestellnummern für das notwendige Zubehör.

Es werden nicht alle Kabel in jedem Projekt benötigt. Beachten Sie die Eignung für die Antennen-Varianten. Bei den Transpondertypen sind übliche Alternativen mit unterschiedlichen Eigenschaften und Montagemöglichkeiten aufgeführt. Eine Übersicht der erzielbaren Leseabstände mit den unterschiedlichen Transponder-Typen finden Sie in Tabelle 51 auf Seite 64. Ein Foto mit den meisten der aufgelisteten Transponder-Typen sehen Sie in Bild 4 auf Seite 19.

Tabelle 4 Zubehör (Abschnitt 1 von 2)

		Kompatibel mit Trans- ponder-Antenne	
Bestell-Nr.	Beschreibung	HG G-71915	
		ZA	YA
HW CAB00001	Stecker X1: Kabel PUR, 5 m mit M12-Winkelkupplung, 5-pol., A- kodiert	~	~
HW CON00055	Stecker X2: CAN Abschlusswider- stand (Terminator), M12 Stecker 5-pol., A-kodiert	~	
HW CAB00064	Stecker X3: Kabel CAN-Bus, 10 m, mit Abschirmung, einseitig M12 Buchse 5-pol. gerade, A-kodiert	~	

		Kompatibel mit Trans- ponder-Antenne		
Bestell-Nr.	Beschreibung	HG G-71915		
		ZA	YA	
HG G-71325XA	Stab-Transponder Üblicherweise Montage im Boden	\checkmark	\checkmark	
 HW DEV00095 HW DEV00098 vorprogrammiert 	Scheiben-Transponder schwarz, ø 30 mm x 3 mm	√	√	
 HW DEV00090 HW DEV00099 vorprogrammiert 	Scheiben-Transponder schwarz, ø 25 mm x 3 mm	~	~	
 HW DEV00130ZA HW DEV00130VA vorprogrammiert 	Scheiben-Transponder weiß, ø 30 mm x 1,5 mm	√	√	
 HW DEV00131ZA HW DEV00131VA vorprogrammiert 	Scheiben-Transponder blau, ø 30 mm x 2,5 mm	√	√	
HG G-70633ZB	Glas-Transponder	✓	\checkmark	
HW DEV00162	Transponder Scheckkartenfor- mat weiß	~	\checkmark	
HG G-70650VA	Puck grau, Schalt-Transponder	✓	✓	
HG G-70652ZC	Puck schwarz	\checkmark	\checkmark	
HG G-70653ZA	Puck schwarz	\checkmark	\checkmark	
HG G-70654ZB	Markierungsnagel gelb	\checkmark	\checkmark	

Tabelle 4	Zubehör	(Abschnitt 2 von 2	2)
-----------	---------	--------------------	----

3.2 Optionales Zubehör

Entnehmen Sie Tabelle 5 die Bestellnummern f
ür das optionale Zubeh
ör. Das optionale Zubeh
ör ist mit allen Varianten der Transponder-Antenne kompatibel.

 Tabelle 5
 Optionales Zubehör

Bestell-Nr.	Beschreibung		
HG G-20960ZA	Anschlussbox M12/USB zur Verbindung mit der USB Schnittstelle eines PCs		
HG G-73650ZD	Bahnführungsrechner zur Berechnung der Bahnen des Fahrzeugs		
HG G-81840ZA	Transponder-Programmiergerät zum Auslesen und Programmieren von Transponder-Codes Die Transponder können auch über die Antenne programmiert werden, dies ist aber im eingebauten Zustand aufwändiger, da üblicherweise dazu das Fahrzeug über den zu programmierenden Trans- ponder gefahren werden muss.		

Geräteübersicht

4.1 Systemkomponenten

Ein Fahrerloses Transportfahrzeug (FTF) benötigt mindestens eine Antenne, Anschlusskabel an die Fahrzeugelektronik und Transponder auf dem/im Boden. Optional können Sie ein Transponder-Programmiergerät einsetzen.

Wenn der Fahrzeughersteller oder der Anlagenbetreiber noch keinen Rechner zur Berechnung der Bahnen des Fahrzeugs hat, empfehlen wir den Bahnführungsrechner der Götting KG.

- **1** Transponder Antenne HG G-71915-A
- 2 Transponder-Programmiergerät (optional)

Transponder zur Montage auf oder in der Fahrbahn (Auswahl):

- 3 Scheiben-Transponder (üblicherweise auf der Fahrbahn)
- 4 Stab-Transponder (üblicherweise im Boden)
- 5 Glas-Transponder (üblicherweise im Boden)

Bild 4 Transponder-Typen (Auswahl)

Von links nach rechts: Scheiben-Transponder (schwarz und weiß), Stab-Transponder, Glas-Transponder, Scheckkarten-Transponder, Puck-Transponder, Markierungsnagel, Schalt-Transponder

Eine vollständige Übersicht aller mit der Transponder-Antenne kompatiblen Transponder inklusive der Bestellnummern finden Sie in Tabelle 4 auf Seite 14.

4.2 Komponenten im Boden: Transponder

Als Referenzmarken für die Spurführung werden Transponder mit trovan[®] Codierung verwendet (siehe 3.1 "Notwendiges Zubehör" auf Seite 14). Weiterführende Unterlagen finden Sie auf unserem Internet-Server (siehe 1.1.2 "Mitgeltende Unterlagen" auf Seite 6).

4.3 Transponder-Antenne

Bild 5 Transponder-Antenne HG G-71915-A

- Druckausgleichselement
 Anschluss X3 (CAN)
- 3 Anschluss X2 (CAN)4 Anschluss X1 (Power)

Alle Kabelanschlüsse sind auf einer Seite des Gehäuses untergebracht.

Entnehmen Sie die Abmessungen Bild 13 auf Seite 27.

Die Antenne verfügt über drei M12-Anschlüsse, die Anzahl der jeweiligen Pins ist abhängig von der Antennen-Variante. Die Anschlussbelegungen finden Sie in Abschnitt 7.2 auf Seite 23.

Funktionsweise

Die Transponder-Antenne erfasst die Position von bewegten Teilen mit Hilfe von passiven Transpondern. Durch nachgelagerte Navigationssysteme (z. B. Fahrzeug-SPS, Götting Bahnführungsrechner), die die von den Antennen ermittelten Daten verarbeiten, können fahrerlose Transportfahrzeuge (FTF) berührungslos gesteuert werden.

Alle wichtigen Einstellungen, Kalibrierungen und Updates können Sie über eine USB-Schnittstelle vornehmen.

Bild 6 Vereinfachtes Prinzip Transponderpositionierung

Bei der Positionserkennung mit Transpondern erkennt eine Transponder-Antenne einen Transponder im Erfassungsbereich. Üblicherweise sind die Transponder an fixen Positionen auf dem oder im Boden montiert und die Antenne bewegt sich über ihnen, z. B. indem sie an einem Fahrzeug befestigt ist, das sich über einen Kurs bewegt.

Alternativ kann die Antenne an einer fixen Position montiert werden und der Anlagenteil mit Transponder bewegt sich relativ dazu z. B. ein Arm eines Roboters oder eine Elektrohängebahn.

Wir beziehen uns im Folgenden auf die Anwendung an Fahrerlosen Transportfahrzeugen (FTF) mit Transpondern im oder auf dem Boden und der Antenne am Fahrzeug.

5.1 Positionserkennung mit Transpondern

Bei der Positionserkennung mit Transpondern bestrahlt die Antenne permanent den Bereich unter ihrer Leseseite mit ihrer Sendefrequenz. Die Transponder sind passiv und benötigen keine eigene Energieversorgung. Sobald die Antenne über einen Transponder fährt, wird dieser induktiv über das Energiefeld der Antenne mit Energie versorgt. Er wacht automatisch auf und nutzt die empfangene Energie, um auf halber Sendefrequenz der Antenne seinen Code zurückzusenden.

Es sind also immer nur Paarungen aus Antennen und Transpondern möglich, deren Sende- und Empfangsfrequenzen zusammen passen. Darüber hinaus gibt es noch weitere Systeme zur Übermittlung und Decodierung des Codes, die nicht in dieser Gerätebeschreibung beschrieben werden.

Es darf sich jeweils immer nur ein Transponder im Lesebereich der Antenne befinden. Zusätzlich zum Transponder-Code gibt die Antenne einen Positionierimpuls (PosiPuls) aus, wenn sie sich über einen Transponder bewegt und die Mittenachse der Antenne dabei den Transponder quert. Dies ermöglicht die Erkennung von vordefinierten Positionen.

Aufgrund der niedrigen Betriebsfrequenzen (128/64kHz) wird die Transpondererkennung praktisch nicht durch nichtleitende Materialien beeinflusst (Flüssigkeiten, Gase oder auch feste Stoffe).

Der Transpondercode kann bei kompatiblen Read/Write Transpondern über die Antenne neu programmiert werden. Der Programmiervorgang kann alternativ über Bus-Telegramme (Abschnitt 10.3 auf Seite 42) oder die Service-Schnittstelle (Abschnitt 9.2.5 auf Seite 39) ausgelöst werden.

5.2 Lesebereich und LEDs

Der Lesebereich umfasst den gesamten Bereich unterhalb der Leseseite der Antenne im Leseabstand.

Die Antenne ist 1-dimensional ausgelegt. Sie erkennt einen Transponder im Lesebereich und erzeugt einen PosiPuls, wenn die Antennenmitte sich über den Transponder bewegt. Außerdem kann sie erkennen, unter welcher Antennenhälfte sich ein Transponder befindet.

Den Betriebszustand zeigt die Antenne über LEDs an, die die Fahrbahn anleuchten. So kann man auch im montierten Zustand, wenn die Antenne sich unter einem Fahrzeug befindet, von außen einen der folgenden Zustände erkennen.

Bild 8	Anzeige	des Betriebs.	zustands	über	LEDs
--------	---------	---------------	----------	------	------

GÖTTING

6

Lagerung

ACHTUNG

Gefahr durch unsachgemäße Lagerung

Das Gerät kann beschädigt werden.

► Halten Sie die Lagerbedingungen ein.

Die Lagertemperatur beträgt -40 °C bis +85 °C.

- Lagern Sie das Gerät ausschließlich in geschlossenen Räumen.
- > Stellen Sie sicher, dass der Lagerraum gut belüftet und trocken ist.
- Schützen Sie das Gerät vor Beschädigung durch Schmutz, Staub oder Feuchtigkeit.

Montage

ACHTUNG

Störungen oder Verstimmung der Antenne

Wenn Sie die Betriebsbedingungen nicht einhalten, kann die Positionserkennung fehlerhaft sein oder die Antenne komplett ausfallen.

▶ Halten Sie die in Abschnitt 7.3 auf Seite 25 genannten Betriebsbedingungen stets ein, insbesondere zu den metallfreien Bereichen und zur Verlegung von stromführenden Leitungen um die Antenne herum.

Für die Montage der Transponder-Antenne empfehlen wir, folgendes Vorgehen:

- Bereiten Sie erst die Anschlusskabel vor (siehe Abschnitt 7.2 auf Seite 23).
- Verlegen Sie die Anschlusskabel im Fahrzeug.
- Montieren Sie dann die Antenne am gewünschten Ort (siehe Abschnitt 7.3 auf Seite 25).
- Verschließen Sie nicht genutzte Steckverbinder mit M12-Verschlusskappen

7.1 Transponder montieren

7.1.1 Betriebsbedingungen für Transponder

Bei allen Transpondern kann der maximale Leseabstand erreicht werden, wenn sie von metallischen Flächen abgesetzt werden. Zur Abklärung der Konfiguration sollten unbedingt Praxistests durchgeführt werden!

Montagemöglichkeiten der Transponder:

- Auf der Fahrbahnoberfläche. ٠
- Bündig in der Fahrbahn mit Verguss. ٠
- ň

Der Leseabstand ist der Abstand zwischen der Leseseite der Antenne und der Transponder-Oberkante.

Transponder dürfen nicht dauerhaft in stehendem Wasser montiert werden. Der Kunststoff kann über längere Zeit Wasser aufnehmen und das Transpondersignal abschwächen.

Dicht unter der Fahrbahnoberfläche verlegte Armierungen können außer den Transpondern auch die Antennen stören und somit die Positionserkennung verfälschen. Die Beeinflussung der Positioniergenauigkeit und -reichweite hängt von der Größe und dem Abstand von Metallteilen ab.

- Beachten Sie die in den zugehörigen Datenblättern angegebenen Mindestabstände (siehe 1.1.2 "Mitgeltende Unterlagen" auf Seite 6).
- Halten Sie die empfohlenen Mindestabstände im metallfreien Raum ein (Abschnitt 7.3.4.2 auf Seite 26). Die Beeinflussung der Positionsgenauigkeit und Reichweite hängt auch von Größe und Entfernung der Metallteile ab.
- Zwischen zwei Transpondern gilt ein lichter Mindestabstand von 240 mm.

GÖTTING

- Es darf sich immer nur ein Transponder im Lesebereich der Antenne befinden.
- Montieren Sie die Transponder so waagerecht (Scheiben-Transponder) bzw. senkrecht (Stab-Transponder) wie möglich.

7.2 Anschlusskabel vorbereiten

Die Antenne hat drei Anschlüsse, diese unterscheiden sich je nach Variante. Die Pinbelegungen finden Sie in den Tabellen unten.

Bild 9 Varianten der Antenne und ihre Anschlüsse

Anschlusskabel sind nicht Teil des Lieferumfangs. Passende Kabeltypen sind von der Götting KG erhältlich (siehe 3.1 auf Seite 14). Kompatible Kabel sind außerdem bei vielen Herstellern verfügbar. Es müssen Kabel zum Einsatz kommen, die bezüglich der Impedanz geeignet sind und eine Abschirmung besitzen.

7.2.1 Alle Varianten: X1 (Power) anschließen

Der POWER-Anschluss beinhaltet die Spannungsversorgung, die USB-Schnittstelle und den Positionierimpuls. Der Ausgang für den Positionierimpuls wird über +UB gespeist und ist auf 20 mA begrenzt.

Wenn Sie die USB-Schnittstelle nutzen wollen:

Beachten Sie Abschnitt 8.1 auf Seite 29 und Kapitel 9 auf Seite 33.

X1 (Power)	Pin	Signal	Bemerkung
4 3	1	+UB	Spannungsversorgung
5	2	PosiPuls out	Positionierimpuls begrenzt auf 20 mA siehe Abschnitt 10.1 auf Seite 41
1 2 M12 5-Pin	3	D+	USB
A coded, male	4	D-	USB
	5	GND	Masse (Daten und Versorgung)

Tabelle 6 Pinbelegung X1 (Power)

i

7.2.2 Variante HG G-71915ZA - CAN-Bus: X2 & X3 anschließen

Der CAN-Bus wird über zwei Anschlüsse X2 und X3 an die Antenne angeschlossen. Diese Anschlüsse können auch zur Spannungsversorgung genutzt werden. Sie haben folgende Pinbelegungen:

ACHTUNG

Beschädigung von CAN-Bus Geräten

Wenn zu hohe Spannung an Pin 4 oder 5 anliegt, können andere an den CAN Bus angeschlossene Geräte beschädigt werden.

Verbinden Sie niemals eine Spannung > 5 V mit Pin 4 oder 5.

Tabelle 7 CAN-Bus: Pinbelegungen X2 & X3

Die Verbindungen über die Eingänge X2/X3 sind parallel angeschlossen, d. h. es gibt keinen Eingang oder Ausgang.

Wenn die Antenne am Ende des Busses angeschlossen ist:

Montieren Sie einen 120 Ohm CAN-Abschlusswiderstand.

120 Ohm Abschlusswiderstände können von verschiedenen Herstellern bezogen werden und sind in Ausführungen für viele Buchsen und Stecker verfügbar. Einen Terminator für die Buchse X2 bietet auch die Götting KG an (siehe Abschnitt 3.1 auf Seite 14).

7.2.3 Variante HG G-71915YA - PROFINET®: X2 & X3 anschließen

PROFINET[®] wird über die zwei Anschlüsse X2 und X3 an die Antenne angeschlossen. X2 und X3 sind intern über einen Switch verbunden, sie haben daher eine identische Pinbelegung.

Tabelle 8	PROFINET®: Pinbelegungen X2 & X3	

X2 & X3	Pin	Belegung
2	1	TX+
$\int O $	2	RX+
	3	TX-
4′ M12, 4-Pin, D coded female	4	RX-
D coded, female	-	

Ĭ.

7.3 Alle Varianten: Transponder-Antenne montieren

7.3.1 Betriebsbedingungen der Antenne

Die Transponder-Antenne HG G-71915-A ist für den Einsatz in geschlossenen Räumen und im Freien zugelassen. Sie darf in einem Temperaturbereich von -25 bis +50 °C eingesetzt werden. Die relative Luftfeuchtigkeit bei 25 °C darf max. 95 % betragen (ohne Betauung).

Die Transponder-Antenne muss so fest am Fahrzeug montiert werden, dass sich ihre Position im normalen Betrieb nicht verändern kann. Ansonsten werden die Positionen der Transponder falsch erfasst.

Im Frequenzbereich 64 ±4 kHz dürfen keine Störsignale durch getaktete Motoren etc. vorhanden sein. Hierunter fallen auch Störfrequenzen, die auf dem Metallkörper des Fahrzeugs aufliegen.

Beseitigen Sie eventuell vorhandene Störsignale.

Die Transponder-Antenne muss so am Fahrzeug montiert werden, dass das Druckausgleichselement nicht verschlossen ist.

Stellen Sie sicher, dass die Luft ungehindert durch das Druckausgleichselement zirkulieren kann.

7.3.2 Abstand zwischen Antenne und Transponder

Der Leseabstand zwischen Transponder-Antenne und Transponder beträgt abhängig vom Transpondertyp 5 bis 60 bzw. 80 mm (siehe Tabelle 51 auf Seite 64).

Zwischen Antenne und Transponder darf sich kein Metall befinden.

i

Nicht-leitende und nicht-abschirmende Verschmutzungen der Fahrbahn sowie Wasser, Nebel, Schnee und Eis haben keinen Einfluss auf die Genauigkeit der Positionserkennung.

7.3.3 Mindestabstand zwischen baugleichen Transponder-Antennen

Zwei oder mehrere Transponder-Antennen, die mit den Frequenzen 128/64 kHz arbeiten, müssen einen Mindestabstand zueinander einhalten, um sich nicht gegenseitig zu stören. Zwischen jeweils zwei Transponder-Antennen HG G-71915-A beträgt dieser Mindestabstand 240 mm.

Wenn der Verdacht besteht, dass durch die Chassis-Konstruktion magnetische Felder übertragen werden:

Führen Sie im Zweifelsfall vor der Montage Untersuchungen durch.

7.3.4 Metallfreie Bereiche um Transponder und Antenne

Metall in der Nähe von Transponder und Antenne beeinflusst die Genauigkeit und Reichweite des Lesesystems. Es wird unterschieden zwischen:

- 1. Kleinere metallische Strukturen, die keine Schleife bilden.
- 2. Geschlossene metallische Strukturen oder kleinere metallische Strukturen, die Schleifen bilden.

Es gelten die folgenden Mindestabstände.

7.3.4.1 Kleinere metallische Strukturen, die keine Schleifen bilden

Um die Antenne herum dürfen kleinere metallische Strukturen, die keine Schleifen bilden, den metallfreien Raum verletzen. Sie müssen einen Mindestabstand von 50 mm haben.

Bild 10 Metallfreier Raum um die Antenne bei kleineren metallischen Strukturen, Draufsicht

7.3.4.2 Geschlossene metallische oder elektrisch leitende Strukturen

Die Antenne kann mit der Montageseite direkt auf Metall montiert werden. Ab dem Deckel auf der Leseseite gelten die folgenden Mindestabstände für geschlossene metallische und elektrisch leitende Strukturen.

Bild 11 Metallfreier Raum um Antenne und Transponder bei geschlossenen metallischen Strukturen oder Schleifen, Seitenansicht (im Beispiel: Transponder in der Fahrbahn)

i

Starkstromleitungen (z. B. für Ladestationen) dürfen in diesem Bereich um die Transponder herum nicht verlegt sein, da durch eventuelle Pulse die Codelesungen erschwert oder der Code verfälscht werden könnte!

7.3.5 Anschlussbeispiel

Bild 12 *Skizze: Anschlussbeispiel*

7.3.6 Montage / Antenne am Fahrzeug befestigen

Die Antenne kann mit der Montageseite direkt auf Metall montiert werden. Auf der Leseseite der Antenne gelten die in Abschnitt 7.3.4 "Metallfreie Bereiche um Transponder und Antenne" auf Seite 25 genannten Freiräume.

Um die Antenne montieren zu können, müssen Sie den Deckel auf der Leseseite abschrauben. Anschließend finden Sie im Gehäuse die Vorbereitungen für vier M4 Schrauben, siehe Bild 13.

Beachten Sie beim Einbau die Orientierung der Antenne!

Bild 13 Befestigungsmöglichkeiten der Antenne

Damit die Systemeigenschaften nicht beeinträchtigt werden:

- Den Montageraum um die Antenne "metallfrei" halten, s. Abschnitt 7.3.4 auf Seite 25.
- ✓ Die Leseantenne nicht mit der Leseseite auf metallischen Flächen betreiben.

✓ Zur störungsfreien Funktion des Transpondersystems ist es sehr wichtig, dass im Frequenzbereich 64 ±4 kHz keine Störsignale durch getaktete Motoren etc. vorhanden sind!

7.3.7 Antenne einschalten

Nach dem Anlegen der Betriebsspannung schaltet sich die Antenne ein und ist nach ca. 1 Sekunde betriebsbereit.

8

Inbetriebnahme

WARNUNG

Gefahr durch fehlende Sicherheitsmaßnahmen

Die Transponder-Antenne HG G-71915-A beinhaltet keinerlei Sicherheitseinrichtungen.

Setzen Sie die Antenne ausschließlich in Anwendungen ein, bei denen ausreichende Maßnahmen zum Personenschutz und zur sicheren Erkennung von Hindernissen umgesetzt wurden.

Voraussetzung:

- Die Antenne muss korrekt verdrahtet sein.
- Die Antenne muss an die Energieversorgung angeschlossen sein.
- Um die Anschlusskabel gegen Störungen zu schützen, sollten abgeschirmte Kabel zum Einsatz kommen.
- Beachten Sie die Hinweise in Abschnitt 7.3.4 "Metallfreie Bereiche um Transponder und Antenne" auf Seite 25.

Ziel der Inbetriebnahme ist es, die Transponder-Antenne für den konkreten Einsatzfall zu parametrieren.

Die Inbetriebnahme besteht aus mehreren Schritten:

- Verbindung der USB-Schnittstelle eines Computers (z. B. Laptop) mit der USB-Schnittstelle der Antenne (siehe Abschnitt 8.1 unten)
- Starten des Terminalprogramms auf dem Computer (siehe Abschnitt 8.2 auf Seite 30)
- Parametrierung der Antenne über die Service-Schnittstelle der Antenne (siehe 8.3 auf Seite 31)
- Speichern der Werte und Neustart des Systems.

8.1 Antenne mit einem Computer verbinden

Sie können das System über eine in der Antenne laufende Software konfigurieren. Sie benötigen dazu ein selbst konfektioniertes Kabel mit der in Bild 14 dargestellten Pinbelegung.

Optional kann die *Anschlussbox M12-5-8-USB* HG G-20960 zwischen Antenne und PC geschaltet werden (siehe auch Abschnitt 3.2 auf Seite 15). Diese erlaubt den Anschluss der Antenne über Standard M12 Kabel und ermöglicht neben der Verbindung zum PC auch die Energieversorgung der Antenne.

Weitere Informationen zur Anschlussbox finden Sie unter http://goetting.de/komponenten/20960

ACHTUNG

Beschädigung der Transponder-Antenne oder anderer Geräte, die über USB verbunden sind

Die USB Schnittstelle hat keinen voreilenden Massekontakt. Wenn man USB Stecker einsteckt oder abzieht, während die Spannungsversorgung angeschlossen ist, können Spannungsspitzen entstehen, die die über USB angeschlossenen Geräte beschädigen.

Trennen Sie immer die Transponder-Antenne von der Spannungsversorgung, bevor Sie USB Steckverbinder einstecken oder abziehen. Dies betrifft z. B. den USB Steckverbinder am Computer und den Steckverbinder X1 (Power) an der Transponder-Antenne.

Um die Software ansprechen zu können:

- Verbinden Sie den Anschluss X1 (Power) der Antenne mit der USB-Schnittstelle Ihres Computers.
- Starten Sie anschließend ein Terminalprogramm auf dem PC.

Bild 14 Anschlussbeispiel USB: Verbindung mit der USB-Schnittstelle eines PCs

Die USB Schnittstelle in der Antenne wird als virtuelle serielle Schnittstelle (virtual COM Port) angesprochen. Üblicherweise wird der entsprechende virtual COM Port Treiber unter aktuellen Versionen von Microsoft® Windows® automatisch installiert.

Sollte die Transponder-Antenne nach Herstellen der USB Verbindung nicht automatisch als virtueller COM Port erkannt werden, muss der STM32 Virtual COM Port Driver (STSW-STM32102) manuell installiert werde. Der Treiber kann unter folgender Adresse im Internet heruntergeladen werden:

http://www.st.com/en/development-tools/stsw-stm32102.html

8.2 Terminalprogramm einstellen

Es kann jedes kompatible Terminalprogramm verwendet werden, Beispiele sind HyperTerminal[®] oder Tera Term[®]. HyperTerminal war in früheren Versionen von Microsoft[®] Windows[®] enthalten. Es kann außerdem für alle Windows[®] Versionen unter folgender Adresse im Internet heruntergeladen werden:

https://www.hilgraeve.com/hyperterminal/

Es kann aber auch ein beliebiges anderes Terminalprogramm eingesetzt werden, das die ANSI-Emulation beherrscht. Sollten Sie ein anderes Programm verwenden, beachten Sie bitte die mit dem Programm mitgelieferte Dokumentation und stellen Sie es auf unten genannten Werte ein.

Wenn Sie ein anderes Terminalprogramm verwenden:

Beachten Sie die mit dem Terminalprogramm mitgelieferte Dokumentation.

COM-Port auswählen:

► Wählen Sie im Menü Datei den Unterpunkt Eigenschaften (oder klicken Sie auf das Icon

- ► Wählen Sie im Unterpunkt Verbinden über die Direktverbindung über den entsprechenden Port aus und bestätigen Sie mit _____.
- Beenden Sie HyperTerminal. Dabei werden Sie zum Speichern aufgefordert.
- Speichern Sie die veränderten Werte.
 Im Beispiel ist jetzt der Port COM1 eingestellt.

8.3 Antenne einstellen (Service-Schnittstelle)

8.3.1 Parameter einstellen

Sobald eine Verbindung zur Antenne über das Terminalprogramm besteht (s. o.), zeigt die Antenne das Grundmenü der Service-Schnittstelle, siehe Abschnitt 9.2.1 auf Seite 34.

Um die Antenne einzustellen:

- Stellen Sie die passenden Übertragungsparameter für den CAN-Bus ein (siehe 9.2.3 "Nur Variante HG G-71915ZA: 2: CAN Config" auf Seite 37).
- Positionieren Sie einen Transponder unter der Antenne und kontrollieren Sie, ob alle Werte über die entsprechende Schnittstelle in Ihrem System ankommen. Nutzen Sie dazu auch die Statusanzeige im Grundmenü. In der Statuszeile müssen die Sum- und Diff-Anzeige deutlich ansteigen. Der Code muss sofort erkannt und die Anzahl der Lesungen muss stetig bis auf 255 hochgezählt werden. Bei Querung des Transponders über die Antennenmittelachse in Fahrtrichtung muss ein Positionierimpuls erzeugt werden.

Wenn keine Fehler aufgetreten sind ist die Antenne jetzt einsatzbereit.

8.3.2 Störeinflüsse minimieren

Der Einfluss der Störungen hängt stark von der Höhe des Transpondersignals ab. Das Transpondersignal muss deutlich über dem Störsignal liegen.

Um Störeinflüsse zu verringern, gehen Sie wie folgt vor:

Justieren Sie gezielt die Empfangsschwelle (siehe Abschnitt 9.2.2 auf Seite 36).
 Die Störeinflüsse sind verringert.

Generell sollten Sie Störeinstrahlungen durch ausreichenden Abstand von Störquellen zur Transponder-Antenne und gleichbleibende Leseabstände zu den Transpondern vermeiden.

8.4 Inbetriebnahme abschließen

Wenn keine Fehler aufgetreten sind:

Speichern Sie die geänderten Werte (siehe Abschnitt 9.2.4 auf Seite 38).

Damit die Änderungen aktiv werden, müssen Sie das System neu starten.

 Trennen Sie die Antenne f
ür kurze Zeit von der Betriebsspannung und schlie
ßen Sie sie wieder an.

Die Transponder-Antenne ist jetzt ordnungsgemäß in Betrieb genommen.

9

System über die Service-Schnittstelle konfigurieren

Die Transponder-Antenne kann über die Service-Schnittstelle parametriert werden. Um die Service-Schnittstelle aufrufen zu können, muss über die USB-Schnittstelle eine Verbindung zur Antenne hergestellt werden. Dann muss ein Terminalprogramm gestartet werden, siehe 8.1 "Antenne mit einem Computer verbinden" auf Seite 29 und 8.2 "Terminalprogramm einstellen" auf Seite 30. In dem Terminalprogramm kann dann das Grundmenü aufgerufen werden. Darüber können Sie die Antenne menügesteuert konfigurieren.

9.1 Service-Schnittstelle starten

Sobald der PC über die USB-Schnittstelle mit der Antenne verbunden ist und das Terminalprogramm läuft, kann mit der Leertaste der Neuaufbau des Grundmenüs ausgelöst werden. Es ist dann das Menü aus Bild 16 unten zu sehen.

9.2 Service-Schnittstelle bedienen

Die Bedienung der Service-Schnittstelle ist für alle Antennen-Varianten gleich, sie unterscheidet sich nur im Aufbau des Grundmenüs und bei HG G-71915ZA (CAN) gibt es ein zusätzliches Menü für die Schnittstelle.

ACHTUNG

Verringerte Positioniergenauigkeit durch falsche Werte

Durch falsche Angaben bei Thresholds kann die Antenne so verstimmt werden, dass Transponder nicht mehr korrekt gelesen werden.

Notieren Sie sich möglichst die Werte, bevor Sie sie anpassen, damit Sie den Ursprungszustand wiederherstellen können, falls es zu Problemen kommt.

9.2.1 Grundmenü

Bild 16 HG G-71915ZA CAN: Grundmenü der Service-Schnittstelle

Bild 17 HG G-71915YA PROFINET®: Grundmenü der Service-Schnittstelle

In jedem der Menübildschirme wird oben ein Statusfeld ausgegeben (siehe Tabelle 9). Die weiteren Menüpunkte werden durch Eingabe der vorangestellten Zahl/des vorangestellten Zeichens aktiviert, z. B. 🔟 für Reader Config.

 Tabelle 9
 Bedeutungen der Statusausgaben (Service-Schnittstelle) (Abschnitt 1 von 2)

Status	Status Bedeutung	
Level	Sum	Pegel des Summensignals (s. auch Bild 18 auf Seite 36).
	Diff	Pegel des Differenzsignals, Vorzeichen in Abhängigkeit davon, unter welcher Antennenhälfte sich der Transponder befindet (s. auch Bild 18 auf Seite 36).

Status		Bedeutung			
Code Sum		Zuletzt dekodierter Transpondercode in HEX			
	Diff	Zuletzt dekodierter Transpondercode in DEC			
Valid	Sum	Gültiger Transpondercode beim Summensignal detektiert.			
	Diff	Gültiger Transpondercode beim Differenzsignal detektiert.			
Counter Sum		Anzahl fehlerhafter Dekodierversuche beim Summensignal.			
	Diff	Anzahl fehlerhafter Dekodierversuche beim Differenzsignal.			
	Zahl	Anzahl erfolgreicher Codelesungen vom Summen- oder Dif- ferenzsignal.			
Error		Ausgabe folgender Fehlerzustände:			
		Tabelle 10 Status Error Fehlerzustände			
		Wertigkeit	Bedeutung		
		0x001	Fehler BUS		
		0x002	Parameterfehler		
		0x004	Fehler USB		
		0x008	Fehler interne Zeitbasis		
		Dieselben Fehlerzustände zeigt die Antenne auch über rote Blinkcodes der LEDs an, siehe Abschnitt 15.2 auf Seite 62. Dort wird auch auf mögliche Ursa- chen und Behebungen eingegangen.			
Autotune		Ermittelter Wert für den automatischen Abgleich der Sende- endstufe			
HG G-7191	5ZA CAN	ĺ			
CAN RX counter		Zähler für empfangene CAN-Bus Telegramme.			
CAN TX Counter		Zähler für gesendete CAN-Bus Telegramme.			
CAN Status		 bei CAN Standard/Extended → Running, Offline bei CANopen[®] → Operational, Preoperational, Stop, Offline 			
HG G-71915YA PROFINET®					
PN Counter	-	Zähler für gesendete PROFINET® Telegramme.			
PN Status		– Data Exchange – Offline			

Tabelle 9 Bedeutungen der Statusausgaben (Service-Schnittstelle) (Abschnitt 2 von 2)

Bild 18 Level für Sum und Diff in Abhängigkeit von der Position des Transponders unter der Antenne

9.2.2 1: Reader Config

Bild 19 Menü: Reader Config am Beispiel HG G-71915ZA CAN

Threshold: Minimale Schwelle beim Summensignal für die Transponderauswertung.

Der Standardwert von 100 hat sich in Testreihen bewährt und sollte nur in Ausnahmefällen verändert werden. Ein zu hoch gewählter Wert (Maximalwert = 999) verringert die Lesereichweite. Ein zu niedrig gewählter Wert führt zu Störeinflüssen.

Posipuls Length: Dauer des PosiPulses in Millisekunden.

ILEDs: Aktivierung oder Deaktivierung der optischen Signalisierung über die LEDs.

i

i

Wenn ein Fehler ansteht, wird dieser unabhängig von dieser Einstellung immer in Form von Blinkcodes in roter Farbe ausgegeben, s. Abschnitt 15.2 auf Seite 62.

GÖTTING
9.2.3 Nur Variante HG G-71915ZA: 2: CAN Config

9.2.3.1 CAN 2.0A / 2.0B

In diesem Menü können die unterschiedlichen Parameter für den CAN-Bus eingestellt werden:

Bild 20 Menü: CAN Config

🧮 COM4 - Tera Term VT	-		×
Datei Bearbeiten Einstellungen Steuerung Fenster Hilfe HG G-71915ZA 1.00 CAN Menu	Goeti	tina	KG ^
Sum Diff Error : 0000 Level : 55 -20 CAN RX counter: 0 Code : 4321(hex) / 17185(dec) CAN RX counter: 14 Valid : 0 0 CAN TX Counter: 14 Valid : 0 0 CAN Status : Running Counter: 1 1 120 1: CAN Mode -> CAN 2.0A (11 Bit ID) 2: Baudrate -> 500 kbit/s Identifier TX 1 -> 100 [hex] 4: Identifier TX 1 -> 10 [hex] 5: Identifier TX 2 -> 200 [hex] 6: Data Clock TX 2 -> Event 8: Data Clock TX 3 -> Event			
[ESC] -> Back			~

CAN Mode: Einstellung, in welchem Modus die CAN-Schnittstelle läuft. Zur Auswahl stehen:

- CAN 2.0A (im Screenshot ausgewählt)
- CAN 2.0B
- CANopen[®] s. Abschnitt 9.2.3.2 auf Seite 38

2 Baudrate: 100 kBit/s, 125 kBit/s, 250 kBit/s, 500 kBit/s, 1 Mbit/s

3 Identifier RX:	Identifie CAN 2.0	er)A: 07FF C	CAN 2.	der 0B: 01FFFF	FFF	Empf	angsbox
4 Identifier TX 1:	Identifie CAN 2.0	er)A: 07FF C	der CAN 2.	0B: 01FFFF	Sendel FFF	хос	1
5 Identifier TX 2:	Identifie CAN 2.0	er)A: 07FF C	der CAN 2.	0B: 01FFFF	Sendel FFF	хос	2
Data Clock TX 2:	0 → 11000	azyklisch [ms] → zyk	bei lisch	Änderung	der	Daten	(Event)
7 Identifier TX 3:	Identifie CAN 2.0	er)A: 07FF C	der CAN 2.	0B: 01FFFF	Sendel FFF	хос	3
B Data Clock TX 3:	0 → 11000	azyklisch [ms] \rightarrow zyk	bei lisch	Änderung	der	Daten	(Event)

9.2.3.2 CANopen®

Bild 21 Menü: CANopen[®] Config

COM4 - Tera Term VT	-		×
Date Bearbeiten Einstellungen Steuerung Fenster Hilfe HG G-71915ZA 1.00 CAN Menu	Goet	ting	KG ^
Sum Diff Error <th:0000< th=""> Level : 50 -19 CAN RX counter: 0 Code : 4321(hex) / 17185(dec) CAN RX counter: 14 Valid : 0 0 CAN TX Counter: 14 Valid : 0 0 CAN Status : Counter: 1 1 120 1 1: CAN Mode -> CANOpen 2: Baudrate -> 500 kbit/s 3: Node ID -> 3 -> 255 5: TPD01 Type -> 255 5: TPD01 Inhibit Time -> 1 6: TPD02 Type -> 255 8: TPD02 Type -> 255 3: 7PD02 Type -> 255 9: TPD02 Type -> 255 3: 14 14 6: TPD02 Type -> 255 3: 14 15 9: TPD02 Type -> 255 3: 14 14 9: TPD02 Type -> 255 3: 14 14 <t< td=""><td></td><td></td><td></td></t<></th:0000<>			
[ESC] -> Back			*

CAN Mode: Einstellung, in welchem Modus die CAN-Schnittstelle läuft. Zur Auswahl stehen:

- CAN 2.0A
- CAN 2.0B
- CANopen[®] (hier ausgewählt)

2 Baudrate: 100 kBit/s, 125 kBit/s, 250 kBit/s, 500 kBit/s, 1 Mbit/s

3 Node ID: Teilnehmeradresse (1 .. 127)

4 TPDO1 Type: 0 .. 240, 255

- 5 TPDO1 Inhibit Time: 0 .. 100 [ms]
- ⁶ TPDO1 Event Time: 0 .. 1000 [ms]
- 7 TPDO2 Type: 0 .. 240, 255
- B TPDO2 Inhibit Time: 0 .. 100 [ms]
- 9 TPDO2 Event Time: 0 .. 1000 [ms]
- Heartbeat Time: 0 .. 1000 [ms]

9.2.4 S: Save Config

Mit der Taste S im Grundmenü werden alle Parameter permanent gespeichert. Anschließend wird das Gerät mit den neuen Einstellungen automatisch neu gestartet.

9.2.5 3: Program Transponder

Bild 22 Menü: Program Transponder am Beispiel HG G-71915ZA CAN

💻 COM4 - Tera Term VT	-		×
Datei Bearbeiten Einstellungen Steuerung Fenster Hilfe	Coat	tina	VC A
NG G-719132A 1.00 Main Menu	GOEL		
Sum Diff Error : 0000 Level : CAN RX counter: 0 Code : 4321(hex) / 17185(dec) CAN TX Counter: 14 Valid : 0 0 CAN Status : Counter: 1 120			
1: Transpondercode dec 2: Transpondercode hex			
[ESC] -> Back			~

Transpondercode dec: dezimale Eingabe des neuen Transpondercodes.

- 2 Transpondercode hex: hexadezimale Eingabe des neuen Transpondercodes.
- Voraussetzung f
 ür die Programmierung ist, dass sich genau ein kompatibler Transponder im Antennenfeld befindet.

Der Programmiervorgang wird nach der Eingabe des neuen Transpondercodes durch Drücken der Taste Ener (ENTER/Eingabe) gestartet.

9.2.6 4: Data Logging

Bild 23 Menü: Data Logging am Beispiel HG G-71915ZA CAN

COM4 - Tera Term VT	-		×
Jatei Bearbeiten Einstellungen Steuerung Fenster Hilfe			_
G G-71915ZA 1.00 Main Menu	Goet	ting	KG
Sum Diff Error : 0000 Level : CAN RX counter: 0 Code : 4321(hex) / 17185(dec) CAN TX Counter: 14 Valid : 0 0 CAN Status : Counter: 1 120 :			
Cone : 4321(nex) / 1/185(dec) CAN IX Counter: 14 Valid : 0 0 CAN Status : Counter: 1 1 120			
1: Transpondercode dec 2: Transpondercode hex			
[ESC] -> Back			

Für Diagnosezwecke können die folgenden Werte über die Service-Schnittstelle ausgegeben werden. Über das Terminalprogramm können die Werte im **CSV-Format** (Comma Separated Values; speziell zum Einlesen in Tabellenkalkulationen formatierte Textdatei) abgespeichert werden. Folgende Daten werden aufgezeichnet:

Timer [ms], Pegel Summensignal, Pegel Differenzsignal, Codelesung Summensignal gültig, Codelesung Differenzsignal gültig, Codelesung insgesamt gültig, Timer Posipuls, Transpondercode Summensignal, Transpondercode Differenzsignal, ausgegebener Transpondercode

Die Aufzeichnung wird durch Drücken der Taste 🖃 (ESC) beendet. Anschließend wird die Antenne automatisch neu gestartet.

Nachdem die *.csv Datei aufgezeichnet ist, kann sie in eine Tabellenkalkulation (z. B. Microsoft[®] Excel[®], OpenOffice[®], ...) eingelesen werden. Beim Öffnen der Datei fragt die Tabellenkalkulation einige Optionen ab. Geben Sie dort an, dass es sich um durch Komma getrennte Werte handelt. Anschließend können die Daten in Diagrammform aufbereitet oder als native Tabellenkalkulations-Datei zur Weitergabe gespeichert werden.

9.2.7 C: Clear Data

Ĭ

Durch Drücken der Taste 🖸 im Grundmenü werden alle Werte im Statusfeld zurückgesetzt.

9.2.8 U: Firmware Update

Bild 24 Menü: Firmware Update

🔟 COM4 - Tera Term VT	-	_	×
Datei Bearbeiten Einstellungen Steuerung Fenster Hilfe			
Press key 'y' to reboot the device in DFU mode. Press any other key to quit.			^
			~

☑: Mit Y startet die Antenne in den DFU mode, in dem eine neue Firmware eingespielt werden kann. Das weitere Vorgehen wir in Kapitel 12 auf Seite 57 beschrieben.

Alle anderen Tasten beenden den Dialog.

10 Schnittstellen

10.1 PosiPuls (Positionierimpuls)

Nach Querung der Antennenmitte wird ein auf 20 mA strombegrenzter Ausgang auf +UB geschaltet, verfügbar an Pin 2 des POWER-Anschlusses. Die Dauer des Posi-Pulses lässt sich über die Service-Schnittstelle einstellen (siehe Abschnitt 9.2.2 auf Seite 36).

Für den PosiPuls gilt:

- Ein Positionierimpuls wird nur nach vorheriger Decodierung eines Transponders generiert.
- Es wird bei einer Transponderquerung genau ein PosiPuls ausgelöst.
- Damit f
 ür einen bereits gelesenen Transponder wieder ein PosiPuls ausgel
 öst wird, muss der Transponder den Lesebereich zwischenzeitlich verlassen haben.

Der PosiPuls wird alternativ zu dem hier beschriebenen Weg im Status des CAN-Telegramms übertragen. Dabei ist allerdings die Latenzzeit der Datenausgabeperiode zu beachten. Darüber hinaus kann auch ein CAN Telegramm ohne Dateninhalt direkt durch den Positionierimpuls ausgelöst werden, s. Abschnitt 10.3.2.2 auf Seite 43.

Der Positionierimpuls-Ausgang ist intern mit +UB verbunden (keine Potentialtrennung). Aus Sicherheitsgründen ist eine 20 mA Strombegrenzung in der Antenne für diesen Ausgang implementiert. Wenn z. B. ein +UB-Spannungsausgang gewünscht wird, kann Pin 2 wie im folgenden Bild zu sehen über einen Widerstand von 1 kOhm mit GND verbunden werden.

Bild 25 Anschlussmöglichkeiten Positionierimpuls

10.2 Systemzustände Status 1 und Status 2

Das System kann über die Bus-Schnittstelle mehrere Zustände oder auch Fehlermeldungen ausgeben.

 Tabelle 11
 Status 1: Mögliche Systemzustände / Fehlermeldungen

Bit	Bedeutung
0	Fehler interne Zeitbasis
1	Fehler CRC Transpondercode
2	Fehler USB-Schnittstelle
3	
4	
5	Parameterfehler
6	
7	
8	Aktueller Transponder ist les- und schreibbar
9	Transponder befindet sich im Lesebereich
10	Transpondercode kann gelesen werden
11	Differenzsignal ist negativ (LEDs sind grün)
12	PosiPuls (LEDs sind weiß)
13	
14	
15	

Tabelle 12 Status 2

Bit	Daten
1	Beim Summensignal kann ein gültiger Transpondercode dekodiert werden
2	Beim Differenzsignal kann ein gültiger Transpondercode dekodiert werden

10.3 Variante HG G-71915ZA: CAN-Bus

10.3.1 CAN Grundlagen

Die CAN- bzw. CANopen[®]-Konfiguration ist nach ISO 11898 bzw. EN 50325-4 aufgebaut. Als Hilfestellung werden in diesem Kapitel wichtige Begriffe und Abkürzungen erläutert. Für genauere Informationen können Sie die Normen heranziehen.

Die technische Spezifikationen des CANopen®-Standards können Sie unter folgendem Link nach einer kostenlosen Registrierung herunterladen:

http://www.can-cia.org/en/standardization/technical-documents/

GOTTING

Beachten Sie, dass ein CAN-Identifier bzw. bei CANopen[®] die Kombination CAN-Identifier und Node-Identifier immer eindeutig sein müssen!

10.3.2 CAN 2.0A und CAN 2.0B

Es sind CAN 2.0A (Basic, 11 Bit Identifier) oder CAN 2.0B (Extended, 29 Bit Identifier) konfigurierbar. Die CAN-Parameter können über die Service-Schnittstelle eingestellt werden (siehe Abschnitt 9.2.3.1 auf Seite 37). Es werden Standard- oder Extended-Frames gesendet und empfangen (einstellbar). Das Bit-Timing ist ebenso wie der Identifier über die Service-Schnittstelle einstellbar.

Es können 3 unterschiedliche CAN Message Objects gesendet und 1 empfangen werden. Es ist konfigurierbar, ob mit der einstellbaren Updaterate permanent Telegramme ausgegeben werden oder nur, wenn sich ein Transponder im Feld befindet.

Die Objekte werden durch Eingabe einer Adresse ungleich 0 im CAN-Menü aktiviert (siehe Abschnitt 9.2.3.1 auf Seite 37).

10.3.2.1 Empfangsbox Transponder-Programmierung (Fahrzeugrechner –> Transponder-Antenne)

Länge: 4 Byte

Byte	Daten
1	Neuer Transponder-Code (Bit 0 - 7)
2	Neuer Transponder-Code (Bit 8 - 15)
3	Neuer Transponder-Code (Bit 16 - 23)
4	Neuer Transponder-Code (Bit 24 - 31)

Tabelle 13 CAN Basic: Aufbau der Empfangsbox Transponder-Programmierung

Dient der Programmierung eines neuen Transpondercodes. Der Programmiervorgang wird in Kapitel 11 auf Seite 56 beschrieben.

10.3.2.2 Sendebox 1 PosiPuls (Transponder-Antenne -> Fahrzeugrechner)

Länge: 0 Byte

Keine Daten, signalisiert einen Posipuls.

Mit Hilfe dieses Telegramms kann z. B. eine SPS einen PosiPuls über den CAN-Bus erkennen, ohne dass der entsprechende Ausgang des POWER Steckers angeschlossen werden muss.

10.3.2.3 Sendebox 2 Status & Code (Transponder-Antenne -> Fahrzeugrechner)

Länge: 7 Byte

Tabelle 14 CAN Basic: Aufbau der Sendebox 2 Status & Code

Byte	Daten			
1	Status 1 (Bit 0 - 7)	Siehe Tabelle 11 auf Seite 42		
2	Status 1 (Bit 8 - 15)			
3	Transponder-Code (Bit 0 - 7	Transponder-Code (Bit 0 - 7)		
4	Fransponder-Code (Bit 8 - 15)			
5	Fransponder-Code (Bit 16 - 23)			
6	Transponder-Code (Bit 24 - 31)			
7	Anzahl der Codelesungen seit der letzten Transponderquerung			

10.3.2.4 Sendebox 3 Pegel & Zähler (Transponder-Antenne -> Fahrzeugrechner)

Länge: 8 Byte

Tabelle 15 CAN Basic: Aufbau der Sendebox 3 Pegel & Zähler

Byte	Daten
1	Pegel Summensignal (Bit 0 - 7)
2	Pegel Summensignal (Bit 8 - 15)
3	Pegel Differenzsignal (Bit 0 - 7, vorzeichenbehaftet/Zweierkomple- ment)
4	Pegel Differenzsignal (Bit 8 - 15, vorzeichenbehaftet/Zweierkomple- ment)
5	Zähler für gültige Codelesungen
6	Zähler für fehlerhafte Lesungen des Summensignals
7	Zähler für fehlerhafte Lesungen des Differenzsignals
8	Status 2 (siehe Tabelle 12 auf Seite 42)

10.3.3 CANopen®

Zusätzlich zu Basic CAN steht CANopen[®] (DS 401) zur Auswahl. Die Messwerte des Systems (Transpondercode, Status, etc.) werden über sogenannte TPDOs übertragen. Die CAN-Identifier werden aus der Nodeadresse (1..127) abgeleitet.

 Tabelle 16
 Begriffserklärungen CANopen[®]

Abkürzung	Name	Bedeutung
PDO	Prozessdaten-Objekte	Maximal 8 Byte Prozessdaten
TPDO	Transmit-PDO	Die von einem Gerät gesendeten Pro- zessdaten
RPDO	Receive-PDO	Die von einem Gerät empfangenen Prozessdaten
SDO	Servicedaten-Objekte	Dient zum Auslesen und Beschreiben von Geräteparametern. Keine Größen- beschränkung
Sync	Synchronisationstele- gramm	Busweites Telegramm, das vom CANopen®-Master geschickt wird
-	CAN-Identifier	Die Adresse, auf der ein PDO, SDO gesendet wird
-	Node ID	Bei CANopen [®] die Adresse des Gerä- tes, die zum CAN-Identifier dazuge- rechnet wird

10.3.3.1 Betriebsarten und -zustände

 Tabelle 17
 CANopen®: Parameter PDO-Betriebsart

Wert	zyklisch	azyklisch	synchron	asynchron	nur auf Anforde- rung (RTR)
0		х	х		
1-240	х		х		
241-251	reserviert				
252			х		х
253				х	х
254				х	
255				х	

Beachten Sie, dass nicht jedes Gerät jede Betriebsart unterstützt. Geräte der Firma Götting unterstützen im Normalfall die Betriebsmodi 1 bis 240 und 255.

Tabelle 18 CANopen[®]: PDO-Betriebsarten

i

Betriebsart	Erklärung
Zyklisch	Jedes n-te Sync-Telegramm werden Daten übertragen
Azyklisch	Sendet, wenn seit dem letzten Sync-Telegramm ein Ereignis aufge- treten ist
Synchron	Daten werden nach Erhalt eines Sync-Telegramms übertragen
Asyncron	Daten werden ereignisgesteuert übertragen
RTR	Ausschließlich auf Anforderung durch ein Remote Frame
Inhibit Time	Minimale Zeitspanne, die vor dem nächsten Versenden desselben PDO vergehen muss
Event Time	Löst bei Ablauf ein Ereignis aus. Wird nach jedem Ereignis neu gestartet.

Tabelle 19 CANopen®-Betriebszustand

Name	Bedeutung
Stopped	Nur Netzwerkmanagementdienste ausführbar
Pre-Operational	Volle Konfiguration möglich, kein Versenden von PDOs
Operational	Volle Konfiguration möglich, eingestellte PDOs werden versen- det

10.3.3.2 EDS-Datei

Für Geräte, die CANopen[®] unterstützen, werden auf der Internetseite der Götting KG EDS-Files (Electronic Data Sheet) zum Download angeboten. In diesen ist die komplette Konfiguration hinterlegt. Die aktuelle Version des EDS-Files für die Transponder-Antenne können Sie jederzeit unter folgender Adresse von unserem Internetserver herunterladen:

http://www.goetting.de/komponenten/71915

Um auf EDS-Files zuzugreifen, können Sie zum Beispiel CANopen Magic von PEAK System benutzen.

http://www.canopenmagic.com

10.3.3.3 Voreinstellungen

Die CAN-Baudrate und die Node-ID können mit Hilfe der Service-Schnittstelle (siehe Abschnitt 9.2.3 auf Seite 37) geändert werden.

10.3.3.4 Beschreibung der Prozessdaten Objekte (PDO)

Den Messwerten sind feste Plätze in den PDOs zugeordnet, ein dynamisches Mapping ist nicht vorgesehen. Die PDO-Betriebsart kann zyklisch-synchron oder asynchron eingestellt werden. Um in der asynchronen Betriebsart bei nicht-zyklischer Übertragung (Event-Time = 0) eine zu hohe Busbelastung durch ständige Wechsel zu vermeiden, kann die sogenannte Inhibit-Time im CAN-Menü der Service-Schnittstelle eingestellt werden. Ein PDO kann aber auch zyklisch übertragen werden. Dafür ist die Event-Time entsprechend zu wählen und für die Inhibit-Time 0 einzugeben.

Ein TPDO kann permanent deaktiviert werden durch Wahl der asynchronen Betriebsart (255) mit Inhibt-Time = 0, Event_time = 0 und Speichern der Parameter. Zusätzlich kann es durch Setzen/Löschen des höchstwertigen Bits im entsprechenden PDO-COB-Identifier, z. B. [1800,01], vorübergehend deaktiviert/aktiviert werden.

10.3.3.5 TxPDO_1 Status & Code (Transponder-Antenne -> Fahrzeugrechner)

Länge: 7 Byte

TxPDO_1 wird mit Identifier 0x180 + Node Adresse übertragen.

Tabelle 20 CANopen[®]: Aufbau von TxPDO_1 Status & Code

Byte	Тур	Daten		
1	Unsigned 16	Status 1 (Bit 0 - 7) Siehe Tabelle 11 auf Seite 42		
2		Status 1 (Bit 8 - 15)		
3	Unsigned 32	Transponder-Code (Bit 0 - 7)		
4		Transponder-Code (Bit 8 - 15)		
5		Transponder-Code (Bit 16 - 23)		
6		Transponder-Code (Bit 24 - 31)		
7	Unsigned 8	Anzahl der Codelesungen seit der letzten Transponder- querung		

10.3.3.6 TxPDO_2 Pegel & Zähler (Transponder-Antenne -> Fahrzeugrechner) Länge: 8 Byte

TxPDO_2 wird mit Identifier 0x280 + Node Adresse übertragen.

 Tabelle 21
 CANopen[®]: Aufbau von TxPDO_2 Pegel & Zähler

Byte	Тур	Daten
1	Unsigned 16	Pegel Summensignal (Bit 0 - 7)
2		Pegel Summensignal (Bit 8 - 15)
3	Signed 16	Pegel Differenzsignal (Bit 0 - 7, vorzeichenbehaftet/Zwei- erkomplement)
4	Signed 16	Pegel Differenzsignal (Bit 8 - 15, vorzeichenbehaftet/ Zweierkomplement)
5	Unsigned 8	Debugzähler
6	Unsigned 8	Zähler für fehlerhafte Lesungen des Summensignals
7	Unsigned 8	Zähler für fehlerhafte Lesungen des Differenzsignals
9	Unsigned 8	Status 2 (siehe Tabelle 12 auf Seite 42)

10.3.3.7 RxPDO_1 Transponder-Programmierung (Fahrzeugrechner -> Transponder-Antenne)

Länge: 4 Byte

Tabelle 22 CANopen[®]: Aufbau von RxPDO_1 Transponder-Programmierung

Byte	Тур	Daten
1	Unsigned 32	Neuer Transponder-Code (Bit 0 - 7)
2		Neuer Transponder-Code (Bit 8 - 15)
3		Neuer Transponder-Code (Bit 16 - 23)
4		Neuer Transponder-Code (Bit 24 - 31)

Dient der Programmierung eines neuen Transpondercodes. Der Programmiervorgang wird in Kapitel 11 auf Seite 56 beschrieben.

10.3.3.8 Heartbeat

Das Gerät unterstützt den Heartbeat-Mode. Wenn im CANopen® Menü (siehe Abschnitt 9.2.3.2 auf Seite 38) eine Heartbeat-Time > 0 eingestellt wird, wird mit jedem Ablauf des Heartbeat-Timers der Gerätezustand unter dem Identifier 0x700 + Node-Adresse gesendet.

 Tabelle 23
 CANopen[®]: Codes des Heartbeat-Modes

Gerätezustand	Code
stopped	0x04
preoperational	0x7f
operational	0x05

10.3.3.9 Beschreibung der Servicedaten Objekte (SDOs)

Für Zugriffe auf das Objektverzeichnis wird das Service-Daten-Objekt verwendet. Ein SDO wird bestätigt übertragen, d. h. jeder Empfang einer Nachricht wird quittiert. Die Identifier für Lese- und Schreibzugriff sind:

Tabelle 24 CANopen[®]: Identifier f ür Lese- und Schreibzugriff

Lesezugriff	0x600 + Node-Adresse
Schreibzugriff	0x580 + Node-Adresse

Die SDO-Telegramme sind in der CiA Norm DS-301 beschrieben. Die Fehlercodes auf Grund einer fehlerhaften Kommunikation sind in der folgenden Tabelle aufgeführt:

Tabelle 25 CANopen[®]: Mögliche SDO Fehlercodes

Name	Nummer	Bedeutung
SDO_ABORT_UNSUPPORTED	0x06010000	Nicht unterstützter Zugriff auf ein Objekt
SDO_ABORT_NOT_EXISTS	0x06020000	Objekt ist nicht implementiert
SDO_ABORT_READONLY	0x06010002	Schreibzugriff auf ein Readonly- Objekt
SDO_ABORT_SIGNATURE	0x08000020	Beim Speichern bzw. Laden von Parametern wurde nicht die Signa- tur "save" bzw. "load" verwendet.
SDO_ABORT_PARA_VALUE	0x06090030	Parameterwertebereich über- schritten
SDO_ABORT_PARA_TO_HIGH	0x06090031	Parameterwert zu hoch

10.3.3.10 Objektverzeichnis

Im CANopen Objektverzeichnis werden alle für das Gerät relevanten Objekte eingetragen. Jeder Eintrag ist durch ein 16 Bit Index gekennzeichnet. Unterkomponenten sind durch einen 8 Bit Sub Index gekennzeichnet. Durch RO werden nur lesbare Einträge gekennzeichnet. Das Objektverzeichnis ist in folgende Bereiche eingeteilt:

- Communication Parameter sind in der Übersichtstabelle mit C gekennzeichnet.
- Manufacture Parameter sind in der Übersichtstabelle mit M gekennzeichnet.

Tabelle 26 CANopen[®]: Kommunikationsspezifische Einträge im Bereich 0x1000 bis 0x1FFF (Abschnitt 1 von 2)

Index	Sub Index	Zugriff	Inhalt
0x1000	0	RO	Device Type
0x1001	0	RO	Error Register
0x1005	0	RO	COB ID Sync Message
0x1008	0	RO	Manufacturer Device Name
0x1009	0	RO	Manufacturer Hardware Version
0x100A	0	RO	Manufacturer Software Version
0x1017	0	RW	Producer Heartbeat Time

Index	Sub Index	Zugriff	Inhalt
0x1018	0	RO	Number of entries of Identity Object
	1	RO	Vendor ID
	2	RO	Product Code
	3	RO	Revision
0x1600	0	RO	Number of Objects mapped to RxPDO_1
	1	RO	Specification of Appl. Object 1
0x1800	0	RO	Number of entries of TxPDO_1
	1	RW*)	COB-ID
	2	RO	Transmission Type
	3	RW	Inhibit Time
	5	RW	Event Time
0x1801	0	RO	Number of entries of TxPDO_2
	1	RW*)	COB-ID
	2	RO	Transmission Type
	3	RW	Inhibit Time
	5	RW	Event Time
0x1A00	0	RO	Number of Objects mapped to TxPDO_1
	1	RO	Specification of Appl. Object 1
	2	RO	Specification of Appl. Object 2
	3	RO	Specification of Appl. Object 3
0x1A01	0	RO	Number of Objects mapped to TxPDO_2
	1	RO	Specification of Appl. Object 1
	2	RO	Specification of Appl. Object 2
	3	RO	Specification of Appl. Object 3
	4	RO	Specification of Appl. Object 4
	5	RO	Specification of Appl. Object 5
	6	RO	Specification of Appl. Object 6

 Tabelle 26
 CANopen®: Kommunikationsspezifische Einträge im Bereich 0x1000 bis 0x1FFF (Abschnitt 2 von 2)

Index	Sub Index	Zugriff	Inhalt
0x6000	0	RO	Number of 8 Bit Inputs (Digital)
	1	RO	Anzahl der Codelesungen der letzten Transpon- derquerung
	2	RO	Debugzähler
	3	RO	Zähler für fehlerhafte Lesungen des Summensig- nals
	4	RO	Zähler für fehlerhafte Lesungen des Differenzsig- nals
	5	RO	Status 2
0x6100	0	RO	Number of 16 Bit Inputs (Digital)
	1	RO	Status 1
0x6120	0	RO	Number of 32 Bit Inputs (Digital)
	1	RO	Transpondercode
0x6320	0	RO	Number of 32 Bit Inputs (Digital)
	1	RO	Neuer Transpondercode
0x6401	0	RO	Number of 16 Bit Inputs (Analog)
	1	RO	Pegel Summensignal
	2	RO	Pegel Differenzsignal

 Tabelle 27
 CANopen®: Standardisierter Geräteprofilbereich im Bereich 0x6000 bis 0x6400

10.3.3.11 CANopen® Directory

 Tabelle 28
 CANopen[®]: Device Type

Index	Sub Index	Name	Тур	Attr.	Мар	Default	Bedeutung
0x1000	00	Device Type	Unsigned 32	RO	No	0x00010191	Digitale Inputs - DS 401

Tabelle 29 CANopen[®]: Error Register

Index	Sub Index	Name	Тур	Attr.	Мар	Default	Bedeutung
0x1001	00	Error Register	Unsigned 8	RO	No	0x00	Fehler Register

Tabelle 30 CANopen®: COB-ID SYNC message

Index	Sub Index	Name	Тур	Attr.	Мар	Default	Bedeutung
0x1005	00	COB-ID SYNC	Unsigned 32	RO	No	0x80000080	Sync Consumer, Sync ID = 0x80

Tabelle 31 CANopen[®]: Manufacturer Device Name

Index	Sub Index	Name	Тур	Attr.	Мар	Default	Bedeutung
0x1008	00	Manufacturer Device Name	Visible String	RO	No	7191	Gerätebezeichnung

Tabelle 32 CANopen [®] : Manufacturer Hardware Version								
Sub	Name	Тур	Δttr	Man	Default	Re		

Index	Index	Name	Тур	Attr.	Мар	Default	Bedeutung
0x1009	00	Manufacturer Hard- ware Version	Visible String	RO	No	A6	Boardversion

 Tabelle 33
 CANopen[®]: Manufacturer Software Version

Index	Sub Index	Name	Тур	Attr.	Мар	Default	Bedeutung
0x100A	00	Manufacturer Software Version	Visible String	RO	No	1.43	Softwareversion

 Tabelle 34
 CANopen[®]: Producer Heartbeat Time

Index	Sub Index	Name	Тур	Attr.	Мар	Default	Bedeutung
0x1017	00	Producer Heartbeat Time	Unsigned 16	RW	No	1000	Heartbeat-Zeit in ms (ca.)

Falls für die Zeit 0 eingetragen wird, ist diese Funktion abgeschaltet.

Tabelle 35 CANopen®: Identity Object

Index	Sub Index	Name	Тур	Attr.	Мар	Default	Bedeutung
0x1018	00	Identity Object	Unsigned 8	RO	No	0x03	Anzahl der Sub Indizes
	01	Vendor ID	Unsigned 32	RO	No	0x00000202	Von CiA festgelegte Herstellernummer
	02	Product Code	Unsigned 32	RO	No	0x00071915	HG-Nummer 71915
	03	Revision	Unsigned 32	RO	No	0x00000001	Version 1

 Tabelle 36
 CANopen[®]: RxPDO_1 Parameter

Index	Sub Index	Name	Тур	Attr.	Мар	Default	Bedeutung
0x1600	00	Number of mapped objects	Unsigned 8	RO	No	1	Anzahl der Sub Indizes
	01	1st mapped object	Unsigned 32	RO	No	0x63200120	Mapped auf Index 0x6320.01 mit 32 Bit Länge

Index	Sub Index	Name	Тур	Attr.	Мар	Default	Bedeutung
0x1800	00	TxPDO Parame- ter	Unsigned 8	RO	No	0x05	Anzahl der Sub Indi- zes
	01	COB ID	Unsigned 32	RW*)	No	0x40000180 + Node-ID	PDO_1 gültig, ID = 0x180 + Node-ID
	02	Transmission Type	Unsigned 8	RW	No	1240,255	Synchron oder Asyn- chron
	03	Inhibit Time	Unsigned 16	RW	No	10	kürzestete Zeit zwi- schen den Aussen- dungen in ms
	04	Dummy					
	05	Event Time	Unsigned 16	RW	No	100	Zykluszeit in ms
*) Hier k	ann nur d	las höchste Bit ver	rändert werden,	um den	PDO v	orübergehend z	u (de)aktivieren.

Tabelle 37 CANopen®: TxPDO_1 Parameter

 Tabelle 38
 CANopen®: TxPDO_2 Parameter

Index	Sub Index	Name	Тур	Attr.	Мар	Default	Bedeutung
0x1801	00	TxPDO Parame- ter	Unsigned 8	RO	No	0x05	Anzahl der Sub Indi- zes
	01	COB ID	Unsigned 32	RW*)	No	0x40000180 + Node-ID	PDO_2 gültig, ID = 0x280 + Node-ID
	02	Transmission Type	Unsigned 8	RW	No	1240,255	Synchron oder Asyn- chron
	03	Inhibit Time	Unsigned 16	RW	No	10	kürzestete Zeit zwi- schen den Aussen- dungen in ms
	04	Dummy					
	05	Event Time	Unsigned 16	RW	No	100	Zykluszeit in ms
*) Hier k	ann nur c	las höchste Bit ver	rändert werden,	um den	PDO v	orübergehend z	u (de)aktivieren.

 Tabelle 39
 CANopen[®]: Mapping TxPDO_1

Index	Sub Index	Name	Тур	Attr.	Мар	Default	Bedeutung
0x1A00	00	number of mapped objects	Unsigned 8	RO	No	3	Anzahl der Sub Indizes
	01	1st mapped object	Unsigned 16	RO	No	0x61000110	Mapped auf Index 0x6100.01 mit 16 Bit Länge
	02	2nd mapped object	Unsigned 32	RO	No	0x61200120	Mapped auf Index 0x6120.01 mit 32 Bit Länge
	03	3rd mapped object	Unsigned 8	RO	No	0x60000108	Mapped auf Index 0x6000.01 mit 8 Bit Länge

Index	Sub Index	Name	Тур	Attr.	Мар	Default	Bedeutung
0x1A01	00	number of mapped objects	Unsigned 8	RO	No	6	Anzahl der Sub Indizes
	01	1st mapped object	Unsigned 16	RO	No	0x64010110	Mapped auf Index 0x6401.01 mit 16 Bit Länge
	02	2nd mapped object	Unsigned 16	RO	No	0x64010210	Mapped auf Index 0x6401.02 mit 16 Bit Länge
	03	3rd mapped object	Unsigned 8	RO	No	0x60000208	Mapped auf Index 0x6000.02 mit 8 Bit Länge
	04	4th mapped object	Unsigned 8	RO	No	0x60000308	Mapped auf Index 0x6000.03 mit 8 Bit Länge
	05	5th mapped object	Unsigned 8	RO	No	0x60000408	Mapped auf Index 0x6000.04 mit 8 Bit Länge
	05	56th mapped object	Unsigned 8	RO	No	0x60000508	Mapped auf Index 0x6000.05 mit 8 Bit Länge

 Tabelle 40
 CANopen[®]: Mapping TxPDO_2

 Tabelle 41
 CANopen®: 8 Bit Digital Inputs (übertragen in TxPDO 1)

Index	Sub Index	Name	Тур	Attr.	Мар	Default	Bedeutung
0x6000	00	number of 8 bit inputs	Unsigned 8	RO	No	5	Anzahl der 8 Bit Einträge
	01	8 bit digital input	Unsigned 8	RO	Yes		Anzahl der Codelesungen der letzten Transponder- querung
	02	8 bit digital input	Unsigned 8	RO	Yes		Debugzähler
	03	8 bit digital input	Unsigned 8	RO	Yes		Zähler für fehlerhafte Lesungen des Summensig- nals
	04	8 bit digital input	Unsigned 8	RO	Yes		Zähler für fehlerhafte Lesungen des Differenzsig- nals
	05	8 bit digital input	Unsigned 8	RO	Yes		Status 2

Tabelle 42 CANopen®: 16 Bit Digital Inputs

Index	Sub Index	Name	Тур	Attr.	Мар	Default	Bedeutung
0x6100	00	number of 16 bit digital inputs	Unsigned 8	RO	No	1	Anzahl der digitalen 16 Bit Einträge
	01	16 bit digital input	Unsigned 16	RO	Yes		Status 1

Index	Sub Index	Name	Тур	Attr.	Мар	Default	Bedeutung
0x6120	00	Number of 32 bit inputs	Unsigned 8	RO	No	1	Anzahl der 32 Bit Einträge
	01	32 bit digital input	Unsigned 32	RO	Yes	./.	Transpondercode

Tabelle 43 CANopen®: 32 Bit Digital Input

Tabelle 44 CANopen®: 32 Bit Digital Output

Index	Sub Index	Name	Тур	Attr.	Мар	Default	Bedeutung
0x6320	00	Number of 32 bit inputs	Unsigned 8	RO	No	1	Anzahl der 32 Bit Einträge
	01	32 bit digital output	Unsigned 32	RO	Yes	./.	Neuer Transpondercode

Tabelle 45	CANopen®: 16 E	Bit Analog Inputs
------------	----------------	-------------------

Index	Sub Index	Name	Тур	Attr.	Мар	Default	Bedeutung
0x6401	00	Number of 16 bit inputs	Unsigned 8	RO	No	2	Anzahl der 16 Bit Einträge
	01	16 bit analog input	Unsigned 16	RO	Yes		Pegel Summensignal
	02	16 bit analog input	Signed 16	RO	Yes		Pegel Differenzsignal

10.4 Variante HG G-71915YA: PROFINET®

Mit Hilfe des GSDML Files wird die PROFINET® Schnittstelle konfiguriert (s. Abschnitt 10.4.4 auf Seite 55).

10.4.1 Input Bytes

 Tabelle 46
 Aufbau der PROFINET® Input Bytes

Byte #	Daten			
1	Status 1 (Bit 0 - 7)	ciabo Tabollo 11 auf Soito 40		
2	Status 1 (Bit 8 - 15)	SIEITE TADEITE II AUT SEITE 42		
3	Transponder-Code (Bit 0 - 7)			
4	Transponder-Code (Bit 8 - 15)			
5	Transponder-Code (Bit 16 - 23)			
6	Transponder-Code (Bit 24 - 31)			
7	Anzahl der Codelesungen			
8	Pegel Summensignal (Bit 0 - 7)			
9	Pegel Summensignal (Bit 8 - 15)			
10	Pegel Differenzsignal (Bit 0 - 7, vorzeichenbehaftet/Zweierkomplement)			
11	Pegel Differenzsignal (Bit 8 - 15, vorzeichenbehaftet/Zweierkomplement)			
12	Telegrammzähler			

10.4.2 Output Bytes

 Tabelle 47
 Aufbau der PROFINET® Output Bytes

Byte #	Daten
1	Neuer Transponder-Code (Bit 0 - 7)
2	Neuer Transponder-Code (Bit 8 - 15)
3	Neuer Transponder-Code (Bit 16 - 23)
4	Neuer Transponder-Code (Bit 24 - 31)

10.4.3 Transponder-Programmierung

Über die INPUT Bytes der PROFINET[®] Schnittstelle können Transponder programmiert werden. Der Ablauf wird in Kapitel 11 auf Seite 56 beschrieben.

10.4.4 GSDML File

Die jeweils aktuellste Version des GSDML Files zur PROFINET®-Konfiguration können Sie von unserem Internet-Server herunterladen.

http://www.goetting.de/komponenten/71915

Transponder-Programmierung

 Voraussetzung f
ür die Programmierung ist immer, dass sich genau ein kompatibler Transponder im Antennenfeld befindet.

Es gibt zwei Möglichkeiten, einen neuen Code in einen Transponder zu programmieren:

- 1. Über die Service-Schnittstelle.
- 2. Über die Bus-Schnittstelle, je nach Antennen Variante CAN (HG G-71915ZA) oder PROFINET® (HG G-71915YA).

11.1 Programmierung über die Service-Schnittstelle

Der Ablauf wird in Abschnitt 9.2.5 auf Seite 39 beschrieben.

11.2 Programmierung über die Bus-Schnittstelle

Der Ablauf der Programmierung über die Bus-Schnittstelle ist für CAN und PROFI-NET® gleich.

Damit der Programmiervorgang ausgelöst wird:

- Es befindet sich ein kompatibler Transponder im Antennenfeld.
- Der zu programmierende Code in den Input Bytes der Bus-Schnittstelle ändert sich. Der Wechsel des Codes ist f
 ür die Antenne das Signal, einen Programmiervorgang durchzuf
 ühren.
- Der neue Code in den Input Bytes unterscheidet sich vom aktuell im Transponder hinterlegten Code.
- Wenn alle Bedingungen erfüllt sind, programmiert die Antenne den Transponder mit dem neuen Code. Die Programmierung dauert ca. 50 ms. Über Status 1 kann geprüft werden, ob der Transponder den neuen Code sendet. Sobald der neue Code über Status 1 empfangen wird ist der Programmiervorgang beendet.

Solange sich der Code in den Input-Bytes nicht ändert, werden weitere Transponder, die z. B. bei Bewegung eines Fahrzeugs in das Antennenfeld kommen, nicht umprogrammiert.

i

Nach einem Antennen-Reset liegt der Code 0000 im Speicher der Antenne. Soll der Code 0000 programmiert werden, empfiehlt es sich, einen anderen Code zu senden und dann wieder die 0000 zu senden.

Für den Fall, dass ein weiterer Transponder mit demselben Code programmiert werden soll, muss zwischenzeitlich ein anderer Code über die Input Bytes übertragen werden und dann erneut der ursprüngliche Code. Beide Codewechsel lösen jeweils einen Programmiervorgang aus.

Firmware der Antenne aktualisieren

Rufen Sie zuerst die Service-Schnittstelle auf (s. Abschnitt 9.1 auf Seite 33).

- Versetzen Sie das Gerät mit der Taste U in den DFU Modus (Device Firmware Upgrade).
- Schließen Sie die Verbindung über den COM Port im Terminalprogramm (auflegen/disconnect).

Für die weiteren Schritte wird die Firmware als *.dfu* Datei, sowie die Software *DfuSe* von ST Microelectronics benötigt. Die Firmware-Datei erhalten Sie auf Nachfrage von der Götting KG. Die Software *DfuSE* kann unter folgender Adresse im Internet heruntergeladen werden:

http://www.st.com/en/development-tools/stsw-stm32080.html

- Laden Sie DfuSE herunter, installieren Sie das Programm und starten Sie es. Es startet im Demo GUI Modus, der für das Firmware Update ausreichend ist.
- Mit Choose die von der Götting KG bereitgestellte .dfu Firmware Update Datei auswählen.

Bild 26 Firmware Update – Datei auswählen

 Wenn die Datei korrekt geladen wurde (Anzeige: File correctly loaded) das Firmware-Update über Upgrade ausführen.

- OfuSe Demo (v3.0.5) Available DFU Devices Application Mode:
 Vendor ID: DFU Mode: Vendor ID: 0483 STM Device in DFU Mode Application N Supports Upload Manifestation tolerant Supports Download Accelerated Upload (ST) Can Detach Verior Procuct ID: DF11 ter DFU mode/HID detach Version: 2200 Actions Select Jargel (I) Target Id Name Available Sectors (Double Click for more) 00 Internal Flash 12 sectors... 01 Option Bytes 1 sectors... 02 OTP Hemory 2 sectors... 03 Device Feature 1 sectors... .dfu Datei wurde korrekt geladen Upgrade or Verify Action File: 19380.dfu Vendor ID: 0483 Upload Action File: Choose... Upload Vendor ID: 0483 Targets in file: Procuet ID: 0000 00 ST... Mit Upgrade das Update starten Transferred data size Version: 0000 0 KB(0 Bytes) of 0 KB(0 Bytes) Verify after download Operation duration 00:00:00 Chgose... Upgrade Verify File correctly loaded. Quit
- Bild 27 Firmware Update Upgrade starten

Nach erfolgreichem Update (Anzeige: Verify successful) kann der DFU Modus über Leave DFU mode verlassen und das Programm beendet werden.

Bild 28 Firmware Update – DFU Modus verlassen

Anschließend kann die Verbindung im Terminalprogramm wieder hergestellt und das Grundmenü der Service-Schnittstelle aufgerufen werden.

Ĭ.

Wartung

Das System ist weitgehend wartungsfrei. Die Wartung beschränkt sich auf

- die Reinigung der Antenne, wenn diese verschmutzt ist.

Neue Firmware-Dateien stellt die Götting KG nur im Bedarfsfall zur Verfügung. Sollten Sie ein Firmware Update von uns erhalten haben:

- Überprüfen Sie die Version der aktuellen Antennensoftware im Grundmenü (siehe Abschnitt 9.2.1 auf Seite 34).
- ► Führen Sie gegebenenfalls ein Update der Betriebssoftware durch (siehe Abschnitt 9.2.8 auf Seite 40 und Kapitel 12 auf Seite 57).

Entsorgung

 Entsorgen Sie die Transponder-Antenne nach den gesetzlichen Bestimmungen ihres Landes.

Nur für EU-Länder:

Entsorgen Sie die Transponder-Antenne nicht im Hausmüll. Sammeln Sie gebrauchte Elektrogeräte gemäß der europäischen Richtlinie 2012/19/EU über Elektro- und Elektronik-Altgeräte getrennt und führen Sie sie über ein lokales Recycling-Unternehmen einer umweltgerechten Wiederverwertung zu.

Fehlersuche

Im Folgenden finden Sie eine tabellarische Auflistung möglicher Fehler. Zu jedem Fehler wird in der zweiten Spalte eine mögliche Ursache angegeben. In der dritten Spalte finden Sie eine Anleitung, wie Sie den Fehler eingrenzen und idealerweise auch beheben können.

Sollten Sie nicht in der Lage sein, einen Fehler zu beheben, nutzen Sie bitte die Tabelle, um ihn möglichst genau einzugrenzen (Art der Fehlfunktion, Zeitpunkt des Auftretens), bevor Sie sich an uns wenden. Die Adresse der Götting KG finden Sie auf der Rückseite dieser Gerätebeschreibung.

15.1 Fehlertabelle

 Tabelle 48
 Fehlertabelle (Abschnitt 1 von 2)

Fehler		Mögliche Ursache(n)	Mögliche Diagnose/Behebung		
1.	 Keine Systemfunktion trotz im Erfassungsbe- reich befindlichen Trans- ponders keine Ausgabe 	Zu geringe Spannungsversor- gung	Messen Sie die Spannung		
2.	 Ausgangswerte nicht reproduzierbar mangelnde Genauigkeit fehlerhafte Positionier- impulse 	Störfrequenzen	 Überprüfen Sie den Wert Sum in der Service-Schnittstelle (s. 9.2.1 auf Seite 34). Wenn dieser ohne Transponder im Erfassungsbe- reich nicht unter ca. 100 liegt, könnten Störfrequenzen im Bereich 64 kHz liegen Legen Sie die Schwelle (Thres- hold Level, s. 9.2.2 auf Seite 36) über den Störpegel. Ein zu hoher Störpegel verringert die mögli- che Überfahrgeschwindigkeit 		
3.	Keine Positionierimpulse	 Transponder defekt Lose Kabelverbindung Störfrequenzen Antenne defekt 	 Überprüfen sie den Transponder (z. B. mit dem Transponder-Pro- grammiergerät, s. 3.2 auf Seite 15). Überprüfen Sie die Kabelverbin- dungen Siehe Fehler 2. oben Falls Sie eine defekte Antenne vermuten, wenden Sie sich bitte an den Service der Götting KG 		
4.	Es wird nur ein Transponder gelesen, weitere werden ignoriert	Störfrequenzen und/oder zu niedrig eingestellte Schwell- werte	Siehe Fehler 2. oben		

Fehl	er	Mögliche Ursache(n)	Mögliche Diagnose/Behebung			
5.	 Keine BUS Kommunika- tion Fehler BUS (angezeigt via LEDs, s. 15.2 unten) 	 CAN: CAN+ mit CAN- ver- tauscht. CAN: Falsches CAN Proto- koll gewählt CAN: Falsche Parameter für CAN Protokoll gewählt PROFINET®: Kabel falsch belegt Alle Varianten: Interner Prozessorfehler 	 Überprüfen Sie die entsprechen- den Verbindungen Stellen Sie mit einem PC und der Service-Schnittstelle das richtige Protokoll bzw. die korrekten Para- meter ein Hardwaredefekt, wenden Sie sich bitte an den Support der Götting KG 			
6.	Parameterfehler (angezeigt via LEDs, s. 15.2 unten)	 Spannungsausfall bei Speicherversuch Interner Prozessorfehler 	 Versuchen Sie, die Parameter nochmals abzuspeichern Hardwaredefekt, wenden Sie sich bitte an den Support der Götting KG 			
7.	Fehler USB (angezeigt via LEDs, s. 15.2 unten)	Interner Prozessorfehler	Hardwaredefekt, wenden Sie sich bitte an den Support der Götting KG			
8.	Fehler interne Zeitbasis (angezeigt via LEDs, s. 15.2 unten)					

Tabelle 48 Fehlertabelle (Abschnitt 2 von	2)
---	----

15.2 Fehlercodes (LEDs)

Wenn ein Fehler auftritt blinken alle LEDs zyklisch rot. Es können damit folgende Fehlersituationen angezeigt werden.

Tabelle 49 LEDs: Blinkcodes für Fehler

Blinksequenz *)	Bedeutung	Ursache/Behebung
₩——	Fehler BUS	s. Tabelle 48 oben
-	Parameterfehler	
--*	Fehler USB	
--*-	Fehler interne Zeitbasis	
*) – * = Die LEDs le – - = kurze Pause – = lange Pause	uchten für 200 ms rot 300 ms 1000 ms	

Eine Liste aller Statusausgaben der Antenne über die Bus-Telegramme und die Service-Schnittstelle finden Sie in Tabelle 11 auf Seite 42.

16 Technische Daten

Tabelle 50 Technische Daten Antenne HG G-71915-A

Antenne HG G-71915-A	
Abmessungen	160 mm x 80 mm (plus Steckverbinder) x 55 mm (B x T x H), siehe Bild 13 auf Seite 27
Gehäuse	Polykarbonat
wirks. Antennenbereich	140 x 60 mm (Funktionsbereich Positionierung)
Gewicht	450 g
Schutzklasse	IP 65
Leseabstand	5 – 80 mm, abhängig vom verwendeten Transpondertyp, s. Tabelle 51 auf Seite 64 (Abstand Transponder - Unterseite Leseantenne)
Relative Luftfeuchte	95 % bei 25° C (ohne Betauung)
Temperaturbereiche	 Betrieb: -25° C bis +50° C Lagerung: -40° C bis +85° C
Versorgungsspannung +UB	+18 VDC bis +30 VDC, Nennspannung + 24 VDC
Stromaufnahme	130 mA @ 24 VDC
Betriebsfrequenz	128 kHz
Codelänge	20 Bit (Trovan™)
max. Überfahrgeschwindigkeit	2,0 m/s
Wiederholgenauigkeit	±2 mm bei 0,5 m/s bei störungsfreier Umgebung
Ausgänge	 Über Bus-Telegramme: Transpondercode und Posipuls Abhängig von der Antennenvariante PROFINET[®] oder CAN Digitaler Ausgang: PosiPuls +UB / 20 mA Stromquelle, Dauer parametrierbar
Anschlüsse	 3x M12 Rundsteckverbinder, Pinbelegung s. Abschnitt 7.2 auf Seite 23 Kabel für viele Schnittstellen sind als Götting Zubehör erhältlich (siehe Abschnitt 3.1 auf Seite 14)
Konfiguration	Über USB Service-Schnittstelle (Stecker X1), USB Virtual COM Port
EMV	siehe Tabelle 52 auf Seite 64
Mech. Belastbarkeit	5 g 11 ms / 2 g 10 bis 55 Hz
Positioniergenauigkeit	±3 mm auf der Mittelachse
Wiederkehrgenauigkeit	2 mm
Programmierdauer	ca. 30 ms

16.1 Kompatible Transpondertypen und Leseabstände

Eine genauere Beschreibung der einzelnen Transponder-Typen finden Sie in Tabelle 4 auf Seite 14.

 Tabelle 51
 Transpondertypen und Leseabstände

Transponder-Typ	Beschreibung	Leseabstand	Bemerkung
HG G-71325XA	Stab-Transponder	5 – 60 mm	
HG G-70633ZB	Glas-Transponder	5 – 80 mm	
HW DEV00095 / 98	Scheiben-Transponder	5 – 60 mm	
HW DEV00090 / 99	Scheiben-Transponder	5 – 60 mm	
HW DEV00130ZA / VA	Scheiben-Transponder	5 – 60 mm	
HW DEV00131ZA / VA	Scheiben-Transponder	5 – 60 mm	
HW DEV00162	Transponder Scheckkartenformat	5 – 80 mm	
HG G-70650VA	Puck-Transponder	5 – 80 mm	nur lesbar
HG G-70652ZC	Puck-Transponder	5 – 80 mm	
HG G-70653ZA	Puck-Transponder	15 – 80 mm	nur lesbar
HG G-70654ZB	Markierungsnagel	5 – 80 mm	nur lesbar

16.2 Elektromagnetische Verträglichkeit (EMV)

Tabelle 52	EMV-Prüfung
------------	-------------

Elektromagnetische Verträglichkeit (EMV)			
Prüf	fung v	on	Erfüllte Prüfnorm
Störa	ausser	ndung	
	Funkst	törstrahlung	EN 55 022 Klasse A
Stör	festigk	eit	
Gehäuse		se	
		Elektromagnetisches HF-Feld, amplitudenmo- duliert	EN 61000-4-3
		Entladung statischer Elektrizität	EN 61000-4-2
Signalanschlüsse		anschlüsse	
		Hochfrequenz asymmetrisch	EN 61000-4-6
		Schnelle Transienten	EN 61000-4-4

Abbildungsverzeichnis

Bild 1	Lese- und Montageseite der Transponder-Antenne	9
Bild 2	Polarität der Ausgabe (für Vorzeichen- und Koordinatenausgabe)	10
Bild 3	Systemkomponenten	16
Bild 4	Transponder-Typen (Auswahl)	17
Bild 5	Transponder-Antenne HG G-71915-A	17
Bild 6	Vereinfachtes Prinzip Transponderpositionierung	19
Bild 7	Lesebereich	20
Bild 8	Anzeige des Betriebszustands über LEDs	20
Bild 9	Varianten der Antenne und ihre Anschlüsse	23
Bild 10	Metallfreier Raum um die Antenne bei kleineren metallischen Strukturen, Draufsicht	26
Bild 11	Metallfreier Raum um Antenne und Transponder bei geschlossenen metalli- schen Strukturen oder Schleifen, Seitenansicht (im Beispiel: Transponder in der Fahrbahn)	26
Bild 13	Befestigungsmöglichkeiten der Antenne	27
Bild 14	Anschlussbeispiel USB: Verbindung mit der USB-Schnittstelle eines PCs	30
Bild 15	COM-Port in HyperTerminal auswählen	31
Bild 16	HG G-71915ZA CAN: Grundmenü der Service-Schnittstelle	34
Bild 17	HG G-71915YA PROFINET®: Grundmenü der Service-Schnittstelle	34
Bild 18	Level für Sum und Diff in Abhängigkeit von der Position des Transpon- ders unter der Antenne	36
Bild 19	Menü: Reader Config am Beispiel HG G-71915ZA CAN	36
Bild 20	Menü: CAN Config	37
Bild 21	Menü: CANopen® Config	38
Bild 22	Menü: Program Transponder am Beispiel HG G-71915ZA CAN	39
Bild 23	Menü: Data Logging am Beispiel HG G-71915ZA CAN	39
Bild 24	Menü: Firmware Update	40
Bild 26	Firmware Update – Datei auswählen	57
Bild 27	Firmware Update – Upgrade starten	58
Bild 28	Firmware Update – DFU Modus verlassen	58

Tabellenverzeichnis

Tabelle 1	Gefahrenklassen nach ANSI Z535.6-2006	8
Tabelle 2	Varianten-Übersicht	9
Tabelle 3	Abkürzungen	10
Tabelle 4	Zubehör	14
Tabelle 5	Optionales Zubehör	15
Tabelle 6	Pinbelegung X1 (Power)	23
Tabelle 7	CAN-Bus: Pinbelegungen X2 & X3	24
Tabelle 8	PROFINET®: Pinbelegungen X2 & X3	24
Tabelle 9	Bedeutungen der Statusausgaben (Service-Schnittstelle)	34
Tabelle 11	Status 1: Mögliche Systemzustände / Fehlermeldungen	42
Tabelle 12	Status 2	42
Tabelle 13	CAN Basic: Aufbau der Empfangsbox Transponder-Programmierung	43
Tabelle 14	CAN Basic: Aufbau der Sendebox 2 Status & Code	43
Tabelle 15	CAN Basic: Aufbau der Sendebox 3 Pegel & Zähler	44
Tabelle 16	Begriffserklärungen CANopen®	44
Tabelle 17	CANopen®: Parameter PDO-Betriebsart	45
Tabelle 18	CANopen®: PDO-Betriebsarten	45
Tabelle 19	CANopen®-Betriebszustand	45
Tabelle 20	CANopen®: Aufbau von TxPDO_1 Status & Code	46
Tabelle 21	CANopen®: Aufbau von TxPDO_2 Pegel & Zähler	47
Tabelle 22	CANopen®: Aufbau von RxPDO_1 Transponder-Programmierung	47
Tabelle 23	CANopen®: Codes des Heartbeat-Modes	47
Tabelle 24	CANopen®: Identifier für Lese- und Schreibzugriff	48
Tabelle 25	CANopen®: Mögliche SDO Fehlercodes	48
Tabelle 26	CANopen®: Kommunikationsspezifische Einträge im Bereich 0x1000 bis 0x1FFF	48
Tabelle 27	CANopen®: Standardisierter Geräteprofilbereich im Bereich 0x6000 bis 0x6400	50
Tabelle 28	CANopen®: Device Type	50
Tabelle 29	CANopen®: Error Register	50
Tabelle 30	CANopen®: COB-ID SYNC message	50
Tabelle 31	CANopen®: Manufacturer Device Name	50
Tabelle 32	CANopen®: Manufacturer Hardware Version	51
Tabelle 33	CANopen®: Manufacturer Software Version	51
Tabelle 34	CANopen®: Producer Heartbeat Time	51
Tabelle 35	CANopen®: Identity Object	51
Tabelle 36	CANopen®: RxPDO_1 Parameter	51
Tabelle 37	CANopen®: TxPDO_1 Parameter	52
Tabelle 38	CANopen®: TxPDO_2 Parameter	52
Tabelle 39	CANopen®: Mapping TxPDO_1	52
Tabelle 40	CANopen®: Mapping TxPDO_2	53

Tabelle 41	CANopen®: 8 Bit Digital Inputs (übertragen in TxPDO 1)	53
Tabelle 42	CANopen®: 16 Bit Digital Inputs	53
Tabelle 43	CANopen®: 32 Bit Digital Input	54
Tabelle 44	CANopen®: 32 Bit Digital Output	54
Tabelle 45	CANopen®: 16 Bit Analog Inputs	54
Tabelle 46	Aufbau der PROFINET® Input Bytes	54
Tabelle 47	Aufbau der PROFINET® Output Bytes	55
Tabelle 48	Fehlertabelle	61
Tabelle 49	LEDs: Blinkcodes für Fehler	62
Tabelle 50	Technische Daten Antenne HG G-71915-A	63
Tabelle 51	Transpondertypen und Leseabstände	64
Tabelle 52	EMV-Prüfung	64
Tabelle 53	Dokumenten-Historie	70

Stichwortverzeichnis

А

Abschlusswiderstand14
Abstand25
Anschluss
CAN-Bus24
Power
PROFINET®24
Anschlussbeispiel
Anschlussbox
Anschlusskabel14
vorbereiten23
Antenne
Abstand zum Transponder25
am Fahrzeug befestigen27
Betriebsbedingungen25
Einsatzbereich
einschalten28
Geräteübersicht17
Koordinatensystem10
mit Computer verbinden29
Montage
Technische Daten63

В

Bahnführungsrechner	15
Bestimmungsgemäße Verwendung	
Betriebsbedingungen	
Antenne	
Transponder	
Betriebszustand	

С

CAN	
Abschlusswiderstand	
Anschluss	
Config	
Message Objects	43
Mode	
Pinbelegungen	
PosiPuls	43
Terminator	
CANopen®	
Config	
EDS	46
EDS-Datei	
Heartbeat	
CSV	

D

Darstellung von Informationen	7
Definitionen	9

Ε

EDS	46
EDS-Datei	46
EMV	64
Entsorgung	60
EU-Konformitätserklärung	7

F

Fachkraft	
Fehlermeldungen	42
Fehlersuche	61
Firmennamen	71
Firmware Update	
Firmwareversion	34
FTF	19

G

Gerätebeschreibung	
mitgeltende Unterlagen	6
Zielgruppe	6
Geräteübersicht	
Transponder	.17
Gültigkeit der Gerätebeschreibung	6

Η

Haftungsausschluss	71
Heartbeat	47
HG	
70633	15
70650	15
70652	15
70653	15
70654	15
71325	15
HW CAB00001	14
HW CAB00064	14
HW CON00055	14
HW DEV00090	15
HW DEV00095	15
HW DEV00098	15
HW DEV00099	15
HW DEV00130	15
HW DEV00131	15
HW DEV00162	15

L

Inbetriebnahme......29

Κ

Kabel	
Komponenten	
im Boden	
Konformitätserklärung	7

Koordinatensystem der Antenne......10

L

Lagerung	
LED	
Leseabstand	
Lesebereich	
Leseseite	9
Lieferumfang	
Logging	

М

Markenzeichen	71
Mindestabstand	
zwischen Antennen	25
Mitgeltende Unterlagen	6
Montage	
Antenne	25
Montageseite	9

Ν

Nicht bestimmungsgemäße	Verwendung11
-------------------------	--------------

Ρ

Pflichten des Betreibers1 Pinbelegungen	3
CAN	4
Power	3
PROFINET®24	4
X123	3
X224	4
X324	4
Polarität der Ausgabe1	0
PosiPuls	.3
Dauer	6
Positionierimpuls	1
Positionserkennung	9
bestimmungsgemäße Verwendung1	1
Funktionsweise1	9
Power	
Anschluss	3
Pinbelegungen2	3
PROFINET®	
Anschluss24	4
GSDML File5	5
Input Bytes54	4
Output Bytes5	5
Pinbelegungen24	4
Programmiergerät1	5
Programmierung	
Transponder	6
0	

S

Schnittstellen	
CAN	
Service-Schnittstelle	31, 33
Bedienung	
Grundmenü	
Sicherheitseinrichtungen	11
Sicherheitshinweise	11
allgemeine	12
bestimmungsgemäße Verwendung	11
nicht bestimmungsgemäße Verwendung	11
Pflichten des Betreibers	13
Software	33
Status 1	42
Status 2	42
Statusfeld	34
Symbole	8
Systemkomponenten	16
т	

Т

Technische Daten	
Terminalprogramm	
einstellen	
Transponder	
Abstand zur Antenne	
Betriebsbedingungen	
montieren	
Programmierung	
Programmiervorgang	

U

Urheberrechte	71
USB	19

V

Varianten	
Verschmutzungen	13

W Wartung

Wartung	59
Х	
X1	23
X2	24
X3	24

Ζ

Zielgruppe	6
Zubehör	
notwendiges	
optionales	

Q

20 Dokumenten-Historie

In der folgenden Tabelle finden Sie eine Auflistung der bisher erschienen Revisionen dieser Gerätebeschreibung mit den jeweils wichtigsten Änderungen.

Revision	Bearbeitet von	Beschreibung der Änderungen	
01 Stand: 23.09.2020	RAD/LM	Initiale Gerätebeschreibung HG G-71915ZA auf der Grundlage der Gerätebeschreibung HG G-71910.	
02 Stand: 16.02.2021	RAD/LM	 Überarbeitung Bild USB Verbindungsaufbau S. 28, Span- nungsversorgung muss extern erfolgen Warnhinweis zu ext. Spannungsversorgung beim Stecken/ Abziehen USB eingefügt 	
03 Stand: 06.05.2021	RAD/LM	Anpassung Lieferumfang, Schutzkappen werden nicht mehr mitgeliefert.	
04 Stand: 24.08.2021	RAD	Korrektur von Rechtschreibfehlern, die bei der Übersetzung aufgefallen sind.	
05 Stand: 13.04.2022	RAD/LM	 Überarbeitung Hinweis USB Layout angepasst an A-Produkte Design 	
06 Stand: 29.11.2022	RAD/LM	Kleine Änderungen nach Hinweis LM.	
07 Stand: 08.02.2023	RAD/LM	Umstellung von HG G-71915ZA auf HG G-71915-A, zusätzlich zu Variante ZA (CAN) Integration der Variante YA (Profinet).	
08 Stand: 15.02.2023	RAD	Korrektur von Rechtschreibfehlern, die bei der Übersetzung der Teile zu Variante YA aufgefallen sind.	
09 Stand: 24.02.2023	RAD/GW	Konvertierung von CAD-Zeichnungen zu Bitmap statt Vektor nach Hinweis GW auf Artefakte in den Bildern.	
10 Stand: 17.08.2023	RAD/LM	Kleine Änderungen nach Hinweis LM.	
11 Stand: 19.10.2023	RAD/LM	 Abschnitt 1.3 zu CE-Erklärung mit Link eingefügt Codelänge in techn. Daten von 16 auf 20 Bit geändert Kapitel 20 Dokumenten-Historie eingefügt 	

 Tabelle 53
 Dokumenten-Historie

21 Hinweise

21.1 Urheberrechte

Dieses Werk ist urheberrechtlich geschützt. Alle dadurch begründeten Rechte bleiben vorbehalten. Zuwiderhandlungen unterliegen den Strafbestimmungen des Urheberrechts.

21.2 Haftungsausschluss

Die angegebenen Daten verstehen sich als Produktbeschreibungen und sind nicht als zugesicherte Eigenschaften aufzufassen. Es handelt sich um Richtwerte. Die angegebenen Produkteigenschaften gelten nur bei bestimmungsgemäßem Gebrauch.

Diese Anleitung ist nach bestem Wissen erstellt worden. Der Einbau und Betrieb der Geräte erfolgt auf eigene Gefahr. Eine Haftung für Mangelfolgeschäden ist ausgeschlossen. Änderungen, die dem technischen Fortschritt dienen, bleiben vorbehalten. Ebenso behalten wir uns das Recht vor, inhaltliche Änderungen der Anleitung vorzunehmen, ohne Dritten Kenntnis geben zu müssen.

21.3 Markenzeichen und Firmennamen

Soweit nicht anders angegeben, sind die genannten Produktnamen und Logos gesetzlich geschützte Marken der Götting KG. Alle anderen Produkt- oder Firmennamen sind gegebenenfalls Warenzeichen oder eingetragene Warenzeichen bzw. Marken der jeweiligen Firmen.

Führung durch Innovation

Götting KG Celler Str. 5 | D-31275 Lehrte Tel. +49 (0) 5136 / 8096 -0 Fax +49(0) 5136 / 8096 -80 info@goetting.de | www.goetting.de

www.goetting.de