

Track-Unit HG G-7335xZB

Auswerter zur induktiven Spurführung von Fahrzeugen zum Anschluss von 2 Antennen – Schnittstellen: CANopen® HG G-73350ZB / Profibus HG G-73351ZB

www.goetting.de

Grundlegende Eigenschaften der Track-Unit HG G-73350ZB (CAN-Bus) und HG G-73351ZB (Profibus)

- Auswerter für induktive Spurführungssysteme
- Für den Anschluss von 2 Spurführungsantennen
- 2 identische Kanäle mit unabhängiger Filterfrequenzeinstellung
- Überwachung der Antennen auf Funktion und Drahtbruch
- Schnittstellen:
 - RS 232 Service-Schnittstelle (alle Varianten)
 - CAN/CANopen® (HG G-73350)
 - Profibus (HG G-73351)
- Parametrierung über Terminalprogramm (RS 232) oder die CAN-open[®] SDOs

© 2023 Götting KG, Irrtümer und Änderungen vorbehalten.

Die Götting KG in D-31275 Lehrte besitzt ein zertifiziertes Qualitätssicherungssystem gemäß ISO 9001.

Inhalt

1 1.1 1.1.1 1.1.2 1.2 1.3 1.3.1 1.3.2	Über dieses Dokument Gültigkeit. Zielgruppe Mitgeltende Unterlagen. Konformitätserklärung (nur HG G-73350). Darstellung von Informationen. Warnhinweise. Symbole	5 5 5 5 6 6 6 7
2 2.1 2.2 2.3 2.4 2.5 2.6	Sicherheitshinweise Bestimmungsgemäße Verwendung Nicht bestimmungsgemäße Verwendung Qualifikation der Benutzer Betriebsbedingungen Allgemeine Sicherheitshinweise Pflichten des Betreibers	
3 3.1 3.2 3.3	Einleitung Variantenübersicht Systemkomponenten Zubehör	12 12 12 12
4 4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.3	Montage Gehäuseabmessungen Steckverbinder Antennenbuchsen am Auswerter CAN-Bus (HG G-73350) Profibus (HG G-73351) Spannungsversorgung und serielles Interface	14 14 14 14 14 15 15 15 16
5	Inbetriebnahme	17
6 6.1 6.2 6.3 6.4 6.4.1 6.4.2	Hardware Überwachung Voreinstellungen Signalverarbeitung Kontroll-LEDs CAN-Bus (HG G-73350) Profibus (HG G-73351)	18 18 18 19 19 19 19 19
7 7.1 7.2 7.3 7.3.1 7.3.2 7.3.3 7.3.4 7.4 7.5	Software Anschluss an einen PC über die serielle Schnittstelle Terminalprogramm Monitorprogramm Hauptmenü Antennenmenü CAN-Menü (HG G-73350) Profibus-Menü (HG G-73351) Einstellung auf andere Umgebungsparameter Firmwareupdate	21 21 21 22 22 24 25 27 27 27 27 28
8 8.1 8.2 8.2.1 8.2.1.1 8.2.1.2	CAN-Interface (HG G-73350) Begriffsbestimmungen CAN und CANopen® Beschreibung der Prozessdaten Objekte (PDOs) Sendeobjekte PDO_1 PDO_2	

8.2.2	Empfangsobjekte	35
8.3	Heartbeat	35
8.4	Beschreibung der Servicedaten Objekte (SDOs)	36
8.5	Objektverzeichnis	36
8.5.1	Kommunikationsspezifische Einträge	36
8.5.2	Herstellerspezifische Einträge	38
8.5.3	Standardisierter Geräteprofilbereich	39
8.5.4	CANopen [®] Object Dictionary	
8.5.4.1	Device Type	39
8.5.4.2	Error Register	
8.5.4.3	COB-ID SYNC message	39
8.5.4.4	Device Name	39
8.5.4.5	Hardware Version	40
8.5.4.6	Software Version	40
8.5.4.7	Save Parameter	40
8.5.4.8	Restore Default Parameter	40
8.5.4.9	Producer Heartbeat Time	
8.5.4.1	0 Identity Object	
8.5.4.1	1 Receive PDO Parameter	
8541	2 Mapping RPDO 1	41
8541	3 Transmit PDO 1 Parameter	42
8541	4 Transmit PDO 2 Parameter	42
8541	5 Manning TyPDO 1	
85/1	6 Manning TVPDO 2	 ۱۲
85/1	7 Manufacture Parameter - Antennennarameter	0+ ۱۲
85/1	Manufacture Parameter Antennenkalibrierung	40 11
85/1	Manufacture Parameter Nodenarameter	
0.0.4.1	9 Mailulaculie Falanielei - Nouepalanielei	40
0.0.4.2	0 0 Dit Digital Input (ubertragen in TXPDO 1)	40
8.5.4.2		
9	Protibus-Interface (HG G-73351)	47
10	Fehlersuche	48
11	Technische Daten	49
12	Anhang	50
121	Blockschaltbilder	50
12.1	Diagramme	51
12.3	Electronic Data Sheet (EDS-File, HG G-73350)	54
12.4	GSD File (HG G-73351)	
13	Abbildungsverzeichnis	
14	Tabellenverzeichnis	
15	Stichwortverzeichnis	58
16	Linucion	
10		
10.1 16.0		
16.2	Haltungsaussumussumussumen Markanzaichan und Firmannaman	00 03
10.0		

Über dieses Dokument

1.1 Gültigkeit

Diese Gerätebeschreibung gilt für den Auswerter HG G-7335xZB.

Sie enthält Informationen zur korrekten Montage, Elektroinstallation, Inbetriebnahme, zum Betrieb, zur Wartung und zur Störungsbeseitigung.

Diese Gerätebeschreibung bezieht sich auf Geräte ab der Firmware wie in Abschnitt 3.1 auf Seite 12 angegeben.

Der Betrieb des Auswerters ist nur zusammen mit Götting Antennen (s. Abschnitt 3.1 auf Seite 12) und einem stromdurchflossenen Leitdraht im Boden sinnvoll möglich. Im Zusammenspiel mit angeschlossenen Antennen und dem Leitdraht sprechen wir von einem Spurführungssystem. Im Folgenden wird daher abhängig vom betrachteten Zusammenhang von dem Gerät Auswerter bzw. dem System gesprochen.

1.1.1 Zielgruppe

Diese Gerätebeschreibung richtet sich an Entwickler, Hersteller oder Betreiber von Anlagen, die Fahrerlose Transportfahrzeuge (FTF) spurführen möchten. Sie richtet sich auch an qualifiziertes Personal, das

- das System in ein Fahrzeug integrieren möchte.
- die Erstinbetriebnahme des Systems durchführen möchte.
- das System konfigurieren möchte.

1.1.2 Mitgeltende Unterlagen

Diese Gerätebeschreibung umfasst keine Informationen zur Bedienung des übergeordneten Systems, z. B. eines Fahrerlosen Transportfahrzeugs (FTF), in das der Auswerter integriert wird.

Nehmen Sie den Auswerter und die zugehörigen Götting Antennen erst in Betrieb, wenn Ihnen die Betriebsanleitung des Herstellers bzw. des Anlagenbetreibers vorliegt und Sie diese gelesen und verstanden haben.

Ergänzende Dokumente zu Geräten der Götting KG erhalten Sie auf Anfrage oder direkt über unsere Internetseiten. Der nebenstehende QR-Code führt Sie auf unsere Startseite <u>www.goetting.de</u>. Die folgenden Links verweisen auf konkrete Produktseiten.

- Antennentyp HG G-19200 <u>http://www.goetting.de/komponenten/19200</u>
- Antennentyp HG G-19535 <u>http://www.goetting.de/komponenten/19535</u>

1.2 Konformitätserklärung (nur HG G-73350)

Das Produkt HG G-73350 erfüllt die einschlägigen Harmonisierungsrechtsvorschriften der Europäischen Union. Zur Beurteilung der Konformität wurden die in der Konformitätserklärung genannten einschlägigen harmonisierten europäischen Normen und Richtlinien herangezogen.

Die EU-Konformitätserklärung können Sie bei der Götting KG anfordern oder unter folgendem Link herunterladen.

https://www.goetting.de/komponenten/7335x

1.3 Darstellung von Informationen

Damit Sie mit dieser Gerätebeschreibung schnell und sicher mit Ihrem Produkt arbeiten können, werden einheitliche Warnhinweise, Symbole, Begriffe und Abkürzungen verwendet. Zum besseren Verständnis sind diese in den folgenden Kapiteln erklärt.

1.3.1 Warnhinweise

In dieser Gerätebeschreibung stehen Warnhinweise vor einer Handlungsabfolge, bei der die Gefahr von Personen- oder Sachschäden besteht. Die beschriebenen Maßnahmen zur Gefahrenabwehr müssen eingehalten werden.

Warnhinweise sind wie folgt aufgebaut:

Art oder Quelle der Gefahr

Folgen

- Gefahrenabwehr
- Das Warnzeichen (Warndreieck) macht auf Lebens- oder Verletzungsgefahr aufmerksam.
- Das Signalwort gibt die Schwere der Gefahr an.
- Der Absatz Art oder Quelle der Gefahr benennt die Art oder Quelle der Gefahr.
- Der Absatz Folgen beschreibt die Folgen bei Nichtbeachtung des Warnhinweises.
- Die Absätze **Gefahrenabwehr** geben an, wie man die Gefahr umgehen kann.

Die Signalwörter haben folgende Bedeutung:

Warnzeichen, Signalwort	Bedeutung
GEFAHR	GEFAHR kennzeichnet eine gefährliche Situation, in der Tod oder schwere Verletzungen eintreten wer- den, wenn sie nicht vermieden wird.
	WARNUNG kennzeichnet eine gefährliche Situation, in der Tod oder schwere Verletzungen eintreten kön- nen, wenn sie nicht vermieden wird.
	VORSICHT kennzeichnet eine gefährliche Situation, in der leichte bis mittelschwere Verletzungen eintre- ten können, wenn sie nicht vermieden wird.
ACHTUNG	ACHTUNG kennzeichnet Sachschäden: Das Produkt oder die Umgebung können beschädigt werden.

1.3.2 Symbole

In dieser Gerätebeschreibung werden folgenden Symbole und Auszeichnungen verwendet:

Wenn diese Information nicht beachtet wird, kann das Produkt nicht optimal genutzt bzw. betrieben werden.

Weist auf einen oder mehrere Links im Internet hin.

- www.goetting.de/xxx
- <u>www.goetting.de/yyy</u>

Weist auf Tipps für den leichteren Umgang mit dem Produkt hin.

- Der Haken zeigt eine Voraussetzung an.
- Der Pfeil zeigt einen Handlungsschritt an.

Die Einrückung zeigt das Ergebnis einer Handlung oder einer Handlungssequenz an.

- Programmtexte und -variablen werden durch Verwendung einer Schriftart mit fester Buchstabenbreite hervorgehoben.
- Menüpunkte und Parameter werden kursiv dargestellt.
- Wenn für Eingaben bei der Bedienung von Programmen Tastenkombinationen verwendet werden, dann werden dazu jeweils die benötigten Tasten
 Hervorgehoben. Bei den Programmen der Götting KG können Sie üblicherweise große und kleine Buchstaben gleichwertig verwenden.

Sicherheitshinweise

Das Produkt wurde gemäß den allgemein anerkannten Regeln der Technik hergestellt. Trotzdem besteht die Gefahr von Personen- und Sachschäden, wenn Sie dieses Kapitel und die Sicherheitshinweise in dieser Dokumentation nicht beachten.

- ✓ Lesen Sie diese Dokumentation gründlich und vollständig, bevor Sie mit dem Produkt arbeiten.
- Bewahren Sie die Dokumentation so auf, dass sie jederzeit f
 ür alle Benutzer zugänglich ist.
- Geben Sie das Produkt an Dritte stets zusammen mit den erforderlichen Doku- \checkmark mentationen weiter.

2.1 Bestimmungsgemäße Verwendung

Der Auswerter ist eine Komponente leitdrahtgestützter Spurführungssysteme für fahrerlose Transportfahrzeuge. Er erkennt mit Hilfe der in Abschnitt 3.1 auf Seite 12 genannten Antennen die Abweichung von im Boden verlegten Leitdrähten und gibt diese an das Spurführungssystem des Fahrzeugs aus, das aus den übermittelten Werten Lenkinformationen errechnet.

Die angeschlossenen Antennen werden auf korrekte Funktion sowie Drahtbruch überwacht. Der Auswerter ist ausschließlich für Spurführungssysteme mit einer maximalen Geschwindigkeit von 1 m/s und ohne Personenbeförderung vorgesehen.

Hauptanwendungsgebiet ist die Spurführung von fahrerlosen Transportfahrzeugen, daher ist dies die Anwendung, die wir ab hier hauptsächlich ansprechen.

Das Spurführungssystem darf nur von qualifiziertem Personal an dem Einsatzort (z. B. Fahrzeug) betrieben werden, an dem es auf der Grundlage dieser Gerätebeschreibung montiert oder von qualifiziertem Personal in Betrieb genommen wurde. Die in Abschnitt 2.4 auf Seite 9 angegebenen Betriebsbedingungen sind zu beachten.

Das Spurführungssystem enthält keine Sicherheitseinrichtungen. Es darf nur dort eingesetzt werden, wo der Hersteller und/oder der Anlagenbetreiber sichergestellt hat, dass ausreichende Maßnahmen zur Gewährleistung der persönlichen Sicherheit und zur sicheren Erkennung von Hindernissen getroffen wurden. Dazu gehört die sichere Erkennung von Situationen wie z. B. das Verlassen der Strecke durch das Fahrzeug oder das Auftauchen von Personen oder Hindernissen vor dem Fahrzeug. In diesen Fällen müssen bewegliche Teile (z. B. Fahrzeuge) sofort angehalten werden, um Sach- und Personenschäden auszuschließen.

Alle Personen, die sich im Einflussbereich einer automatisierten Anlage (z. B. fahrerlose Transportsysteme, FTS) befinden, müssen über die Art der Anwendung und die damit verbundenen Risiken belehrt werden.

2.2 Nicht bestimmungsgemäße Verwendung

Jeder andere Gebrauch als in der bestimmungsgemäßen Verwendung beschrieben ist nicht bestimmungsgemäß und deshalb unzulässig.

Für Schäden bei nicht bestimmungsgemäßer Verwendung übernimmt die Götting KG keine Haftung. Die Risiken bei nicht bestimmungsgemäßer Verwendung liegen allein beim Benutzer.

Zur nicht bestimmungsgemäßen Verwendung des Produkts gehört:

- die Verwendung der Transponder-Antenne in Fahrzeugen, die nicht mit Sicherheitseinrichtungen zum Personenschutz und zur sicheren Erkennung von Hindernissen ausgestattet sind.
- Ein Verlassen der Spur oder das Auftauchen einer Person oder eines Hindernisses im Gefahrenbereich müssen jederzeit sicher erkannt werden und es muss für ein sofortiges Stoppen von bewegten Teilen (z. B. Fahrzeugen) gesorgt werden, um Sach- oder Personenschäden auszuschließen.

2.3 Qualifikation der Benutzer

Die in diesem Dokument beschriebenen Tätigkeiten erfordern grundlegende Kenntnisse der Mechanik und Elektrik sowie Kenntnisse der zugehörigen Fachbegriffe. Um die sichere Verwendung zu gewährleisten, dürfen diese Tätigkeiten daher nur von einer entsprechenden Fachkraft oder einer unterwiesenen Person unter Leitung einer Fachkraft durchgeführt werden.

Eine Fachkraft ist, wer aufgrund seiner fachlichen Ausbildung, seiner Kenntnisse und Erfahrungen sowie seiner Kenntnisse der einschlägigen Bestimmungen die ihm übertragenen Arbeiten beurteilen, mögliche Gefahren erkennen und geeignete Sicherheitsmaßnahmen treffen kann. Eine Fachkraft muss die einschlägigen fachspezifischen Regeln einhalten.

Das für die Montage, Inbetriebnahme und Konfiguration des Spurführungssystems vorgesehene Personal

- ✓ hat diese Gerätebeschreibung zur Verfügung gestellt bekommen.
- ✓ ist mit der Funktionsweise des übergeordneten Systems (z. B. einem Fahrzeug) vertraut.
- ✓ ist zur Ausführung seiner T\u00e4tigkeiten bef\u00e4higt und in ausreichendem Umfang in der Montage und Konfiguration des Spurf\u00fchrungssystems geschult, wenn dies Teil seiner T\u00e4tigkeiten ist.
- ✓ ist mit der Inbetriebnahme von und dem Telegrammaustausch über CAN Busbzw. Profibus-Verbindungen vertraut.
- kennt für den Fall, dass das Spurführungssystem zur Positionserkennung von automatisierten Fahrzeugen zum Einsatz kommen soll – die von einem Fahrerlosen Transportfahrzeug (FTF) ausgehenden Gefahren und ist im Umgang mit dem Fahrzeug und gegebenenfalls nötigen Sicherheitsvorkehrungen ausreichend unterwiesen, um den arbeitssicheren Zustand des Systems zu beurteilen.
- kennt für den Fall, dass andere Geräte oder Systeme mit bewegten Teilen zum Einsatz kommen – die von dem Anwendungsfall ausgehenden Risiken und ist in den gegebenenfalls nötigen Sicherheitsvorkehrungen ausreichend unterwiesen, um den arbeitssicheren Zustand des Systems zu beurteilen.

2.4 Betriebsbedingungen

- Beachten Sie die Bedingungen f
 ür die Installation der Antennen, die in den entsprechenden Dokumenten (s. Abschnitt 1.1.2 auf Seite 5) angegeben sind, insbesondere die Spezifikationen f
 ür metallfreie Bereiche um die Antenne und die Störfestigkeit.
- Verstärkungen in der Nähe der Fahrbahnoberfläche können die Antennen stören und damit die Positionserfassung verfälschen. Dies gilt auch für große Metallteile (Bleche) auf dem Boden, die Nähe von Bodenverstärkungen und

Induktionsschleifen, wie sie z. B. durch Baustahlmatten entstehen. Einzelne Metallstücke haben weniger Einfluss. Diese können sich teilweise innerhalb des metallfreien Bereichs des Leitdrahts befinden.

- Die Größe der metallfreien Bereiche um die Antennen entnehmen Sie bitte den entsprechenden Datenblättern, die in Abschnitt 1.1.2 auf Seite 5 aufgeführt sind.
- Der nominale Leseabstand zwischen Antenne und Leitdraht hängt vom Antennentyp und dem Drahtstrom ab. Zwischen Antenne und Leitdraht darf sich kein Metall befinden. Nicht leitender und nicht abschirmender Schmutz auf der Fahrbahn sowie Wasser, Öl, Teer, Erde, Nebel, Schnee und Eis haben keinen Einfluss auf die Positionierung.
- Auch wenn Schmutz die Positionierung nicht beeinflusst, sollte die Antenne vor Schmutz und Feuchtigkeit (z. B. Spritzwasser von den R\u00e4dern des Fahrzeugs) gesch\u00fctzt und regelm\u00e4\u00dfig gereinigt werden. Andernfalls steigt der Verschlie\u00df an der Antenne.
- ✓ Die Antenne muss so fest am Fahrzeug befestigt werden, dass sich ihre Position während des normalen Betriebs nicht verändert. Sonst interpretiert das übergeordnete System die Positionsdaten falsch und das Fahrzeug könnte z. B. neben der Strecke fahren.
- ✓ Nach der Montage sollten die Störungen nicht mehr als 500 Einheiten betragen. Dies steht in engem Zusammenhang mit der Qualität des Drahtsignals. Dieses Signal muss deutlich höher sein als die Störsignale. Je mehr Störungen besonders in die *Differenz Antenne* eingestrahlt werden, desto ungenauer wird die Abstandsausgabe.
- Generell sollten Störungen vermieden werden, indem ausreichende Abstände zu Störquellen und gleichmäßige Leseabstände zum Leitdraht eingehalten werden.
- Im gewählten Frequenzbereich dürfen keine Störsignale von getakteten Motoren etc. auftreten. Dazu gehören auch Störungen, die über die Metallkarosserie des Fahrzeugs übertragen werden. Da Magnetfelder über Fahrwerksteile übertragen werden können, ist es im Zweifelsfall ratsam, Tests durchzuführen.
- ✓ Kabel müssen mit einem Mindestabstand von 150 mm von der Antenne installiert werden, da diese Kabel den Antennenempfang stören können. Wie stark sie stören, hängt von der Leistung und der Frequenz ab. Auch hier ist es wichtig, dass die Interferenzen nicht höher als 500 Einheiten sind.
- ✓ Das System ist f
 ür den Einsatz in Innenr
 äumen vorgesehen. Der Betriebstemperaturbereich betr
 ägt 0 bis +50° C.
- ✓ Die relative Luftfeuchtigkeit beträgt 95 % bei 25° C (ohne Kondensation).

2.5 Allgemeine Sicherheitshinweise

- Das Spurführungssystem umfasst keine Sicherheitseinrichtungen. Es darf nur dort eingesetzt werden, wo der Hersteller und/oder der Anlagenbetreiber sichergestellt hat, dass ausreichende Maßnahmen zur Gewährleistung der persönlichen Sicherheit und zur sicheren Erkennung von Hindernissen getroffen wurden.
- Der Hersteller und/oder der Anlagenbetreiber müssen die sichere Erkennung von Situationen wie z. B. das Verlassen der Strecke durch das Fahrzeug oder das Auftauchen von Personen oder Hindernissen vor dem Fahrzeug gewährleisten. In diesen Fällen müssen bewegliche Teile (z. B. Fahrzeuge) sofort angehalten werden, um Sach- und Personenschäden auszuschließen.

- Bei der Verwendung des Spurführungssystems sind die Betriebsbedingungen aus Abschnitt 2.4 auf Seite 9 zu beachten.
- Es ist darauf zu achten, dass Störungen im Boden oder auf dem Fahrzeug kein höheres Signal als 500 Einheiten in der Antenne induzieren. Stellen Sie sicher, dass der Leitdraht ein ausreichend hohes Signal hat. Andernfalls können Messfehler auftreten.

2.6 Pflichten des Betreibers

Der Betreiber muss beim Einsatz der Transponder-Antenne sicherstellen, dass

- ✓ alle Personen im Einflussbereich einer automatisierten Anlage (z. B. Fahrerloses Transportfahrzeug (FTF)) über die Art der Anwendung und die damit verbundenen Gefahren unterrichtet sind,
- ✓ die in dieser Gerätebeschreibung unter 2.4 auf Seite 9 genannten Betriebsbedingungen eingehalten werden,
- alle Komponenten des Spurführungssystems sich in einem technisch einwandfreien Zustand befinden.

Der Betreiber darf Götting Systeme, Geräte und Komponenten nicht eigenmächtig verändern oder umbauen.

Einleitung

Der in dieser Dokumentation beschriebene Auswerter erlaubt den Anschluss von 2 Spurführungsantennen. Er enthält 2 identische Kanäle mit unabhängiger Filterfrequenzeinstellung. Die Datenausgabe erfolgt je nach Version (s. u.) über CAN Bus oder Profibus. Beim CAN-Bus ist ein CANopen® Protokoll (Device Profil DS 401) implementiert.

Die Parametrierung wird entweder über die serielle Schnittstelle mittels eines gewöhnlichen Terminalprogramms (z. B. HyperTerm), oder über die diversen SDOs des CAN-open® Protokolls durchgeführt.

3.1 Variantenübersicht

Der Auswerter ist in zwei Varianten verfügbar, die sich durch die Schnittstelle unterscheiden:

Tabelle 2 Variantenübersicht

Variante	Schnittstelle
HG G-73350ZB	CAN-Bus / CANopen®
HG G-73351ZB	Profibus

Diese Beschreibung gilt für die Hardwareversion 73350ZA2 ab der Firmware 73350A01.14 (HG G-73350ZB) bzw. 73350YA2 mit der Firmware 73351A01.00 (HG G-73351ZB).

3.2 Systemkomponenten

Der Auswerter kann zum Zeitpunkt der Drucklegung dieser Gerätebeschreibung mit folgenden Lenkantennen betrieben werden:

- HG G-19200 ٠
- HG G-19535
- HG G-19536 ٠

Die technischen Informationen zu den Lenkantennen im PDF-Format finden Sie über unsere Internetseiten unter der Adresse:

http://www.goetting.de/komponenten/induktiv

3.3 Zubehör

Die Steckerbelegungen am Auswerter finden Sie in Abschnitt 4.2 auf Seite 14.

- ٠ Kabel für Spannungsversorgung Sensorkabel 5-pol., geschirmt, Buchse, A-codiert, max. Länge 30 m
- ٠ Kabel für Anschluss der Antennen Sensorkabel 4-pol., geschirmt, Stecker oder Buchse, A-codiert, max. Länge 30m

GÖTTING

Kabel f
ür CAN-Bus

Buskabel 2-pol. oder Sensorkabel 5-pol. (inkl. Spannungsversorgung), geschirmt, Stecker oder Kupplung, A-codiert, max. Länge 30 m Kabellänge beeinflusst max. Baudrate, z. B. 2-pol. Buskabel, Baudrate 1 MBit: max. Länge 30 m z. B. Götting HW CAB00064 (5-pol. Sensorkabel, female, gerade, Anschluss an BUS1)

 CAN Abschluss (Terminator) f
ür M12 Steckverbinder z. B. Götting HW CON00055 (male, Anschluss an BUS2) / HW CON00096 (female, Anschluss an BUS1)

- Kabel für Profibus
 Buskabel 2-pol., geschirmt, Stecker (5-pol.) oder Buchse (5-pol.), B-codiert,
 Länge je nach Baudrate aber max. 30 m
 z. B. Götting HW CAB00002 (male, gerade, Anschluss an BUS2) /
 HW CAB00003 (female, gerade, Anschluss an BUS1) / HW CAB00044 (female,
 abgewinkelt, Anschluss an BUS1)
- Profibus Abschluss (Terminator) f
 ür M12 Steckverbinder z. B. Götting HW CON00003 (male, Anschluss an BUS2)

Montage

4.1 Gehäuseabmessungen

Bild 1 Gehäuseabmessungen Auswerter HG G-73350/HG G-73351

4.2 Steckverbinder

Alle Verbinder sind M12 Einbaustecker/-buchsen, bis auf die B-codierten Profibus Verbinder sind sie A-codiert. Die Gehäuse aller Verbinder sind mit der Gerätemasse verbunden. Hinweise zu passenden Anschlusskabeln finden Sie in Abschnitt 3.3 auf Seite 12.

4.2.1 Antennenbuchsen am Auswerter

Der Anschluss der Lenkantennen erfolgt mit Hilfe eines Eins-zu-Eins-Kabels an die entsprechende 4-polige M12 Einbaubuchse, diese Buchsen sind A-codiert. Die beiden Buchsen sind in Bild 1 mit ANT1 und ANT2 bezeichnet und wie folgt belegt:

ANT1 / ANT2 (female)	Pin	Signal
	1	+UB 24 V
	2	GND
	3	Usumme
	4	Udifferenz
A-codiert	Gehäuse	GND

 Tabelle 3
 Anschlussbelegung Antennenbuchsen Stecker ANT1 und ANT2

Diese Buchsen dienen dem Anschluss der Lenkantennen. Es ist belanglos ob 1 oder 2 Antennen verwendet werden. Bei Verwendung von 1 Antenne kann der Anschluss ANT1 oder ANT2 gewählt werden. Die Anzeige CD1/CD2 auf der Frontplatte (siehe

GÖTTING

auch Bild 2 auf Seite 19) bezieht sich auf den enstprechenden Antenneneingang. Die Eingangsspannungen der Anschlüsse ANT1 bzw. ANT2 werden intern als US1/ UD1 bzw. US2/UD2 verarbeitet.

4.2.2 CAN-Bus (HG G-73350)

ACHTUNG

Beschädigung des Geräts

Bei zu hoher Spannung auf den Busleitungen können der Bustreiber im Auswerter und möglicherweise sogar weitere am Bus angeschlossene Geräte beschädigt werden.

▶ Pin 4 oder 5 dürfen nicht mit Spannungen > 24 V verbunden werden!

Der CAN-Bus wird über zwei 5-polige A-codierte M12 Anschlüsse (Stecker, Buchse) an das Gerät angeschlossen. Diese sind auf der Zeichnung "Gehäuseabmessungen Auswerter HG G-73350/HG G-73351" auf Seite 14 mit BUS1 und BUS2 bezeichnet und wie folgt belegt:

Tabelle 4 Anschlussbelegung CAN-Bus Stecker BUS1 und BUS2

BUS1 (male)	BUS2 (female)	Pin	Signal	
		1	n.c.	
		2	+24 V	
$\left(\left(\left(\begin{array}{c} \bullet & \bullet^{5} \bullet \\ 3 & \bullet^{4} \end{array} \right) \right) \right)$	$\left(\left(\left(\left(\begin{array}{c} \left(\breve{O}^{5} \bullet \breve{O} \\ \bullet $	$\left(\left \left(\left(\begin{array}{c} \left(O_{1}^{5}O O \right)\right)\right)\right \right)\right\rangle$	3	Bus GND
		4	CAN_H	
		5	CAN_L	
A-codiert		Gehäuse	GND	

Die Anschlüsse der Buchsen BUS1/BUS2 sind parallel geschaltet, d. h. es gibt keinen Eingang bzw. Ausgang. Falls der Auswerter am Ende der Busleitung eingesetzt wird, so ist ein CAN-Abschlusswiderstand vorzusehen. Diese Abschlusswiderstände sind von verschiedenen Herstellern verfügbar und in Versionen für Buchsen bzw. Stecker erhältlich. Das Gerät kann auch über die CAN-Anschlüsse mit Spannung versorgt werden.

4.2.3 Profibus (HG G-73351)

Je ein 5-poliger B-codierter M12 Einbaustecker bzw. Einbaubuchse, in Bild 1 auf Seite 14 mit BUS1 und BUS2 bezeichnet.

Tabelle 5 Anschlussbelegung Profibus Stecker BUS1 und BUS2

BUS1 (male)	BUS2 (female)	Pin	Signal	
		1	Bus +5 V	
		2	Bus A	
	$\left(\left(\left(\left(\begin{array}{c} \left(\begin{array}{c} 0 & 5 \\ 0 & 3 \end{array} \right) \right) \right) \right) \right) \right)$	$ \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \bullet \end{array} \right) $	3	RTS
		4	Bus B	
		5	Bus GND	
B-codiert		Gehäuse	GND	

Die Anschlüsse der Buchsen BUS1/BUS2 sind parallel geschaltet, d. h. es gibt keinen Eingang bzw. Ausgang. Falls der Auswerter am Ende der Busleitung eingesetzt wird, so ist ein Bus-Abschlusswiderstand vorzusehen. Diese Abschlusswiderstände sind von verschiedenen Herstellern verfügbar und in Versionen für Buchsen bzw. Stecker erhältlich.

4.2.4 Spannungsversorgung und serielles Interface

5-poliger, A-codierter M12 Einbaustecker, in Bild 1 auf Seite 14 mit PWR RS232 bezeichnet und versehen mit folgender Pinbelegung:

 Tabelle 6
 Anschlussbelegung Spannungsversorgung und serielles Interface, Stecker PWR / RS232

PWR / RS232 (male)	Pin	Signal	Bemerkung
	1	+ UB 24 V	
	2	—	n.c.
	3	TxD	Serieller RS 232 Datenausgang
	4	RxD	Serieller RS 232 Dateneingang
	5	GND	
A-codiert	Gehäuse	GND	

Dieser Anschluss dient der Spannungsversorgung. Zusätzlich steht hier die serielle RS 232-Schnittstelle zur Parametrierung zur Verfügung, siehe Kapitel auf Seite 21.

Inbetriebnahme

Nach Einbau oder Wechsel von Antennen sollte eine Ortskalibrierung durchgeführt werden, siehe Abschnitte 7.3.2 auf Seite 24 und 8.5.4.18 auf Seite 44. Die Ortskalibrierung muss für jede der angeschlossenen Antennen einzeln durchgeführt werden.

Erst diese Ortskalibrierung ermöglicht es dem Auswerter, die Abweichung in mm skaliert zu berechnen und auszugeben.

Voraussetzungen für die Ortskalibrierung sind:

- ✓ Ein Einleiter System. Die verwendeten Rechenalgorithmen bilden dieses System exakt ab.
- ✓ Eine in Nennhöhe angebrachte Antenne. Diese Nennhöhe muss mit der im Auswerter eingestellten übereinstimmen (siehe auch Abschnitte 7.3.2 auf Seite 24 und 8.5.4.17 auf Seite 43).
- ✓ Ein mit Nennstrom (möglichst 10 kHz) gespeister Leitdraht.
- Um Asymmetrien durch die Einbauumgebung auszugleichen, wird f
 ür die rechte bzw. die linke Abweichung jeweils ein eigener Kalibrierwert gebildet.
- ✓ Die Antenne muss dabei in einem Bereich, der dem Doppelten der Einbauhöhe entspricht, nach links und rechts über den Draht geschwenkt werden.

Die Kalibrierung kann über die serielle Schnittstelle oder CAN-Bus werden (siehe Abschnitte 7.3.2 auf Seite 24 und 8.5.4.18 auf Seite 44).

Ĭ.

Hardware

Der Auswerter ist in ein Kunststoffgehäuse eingebaut. Sämtliche Anschlüsse sind frontseitig über M12 Steckverbinder vorgesehen.

Die Eingangssignale (2 pro Antenne) werden verstärkt, mit einem einstellbaren Bandfilter gefiltert (Frequenzgang s. Bild 14 auf Seite 51) und mittels Synchrongleichrichter gleichgerichtet. Die Gleichspannungen werden anschließend nochmals durch 40 Hz Tiefpässe geglättet (Blockschaltbild s. Bild 12 auf Seite 50).

6.1 Überwachung

Die Lenkantennen werden auf Funktion überwacht: Die Horizontalkomponente des Feldes (Summenantenne) wird als Referenz grundsätzlich über die Schwellwertbits im Systemstatus überwacht.

Die Vertikalkomponente des Feldes (Differenzantenne) ist mittig über dem Draht gleich Null. Ein defekter Differenzkanal würde jedoch immer eine Abweichung = 0 erzeugen. Aus diesem Grund werden diese beiden Kanäle über eine DC-Überwachung kontrolliert. Vor den Empfangsspulen in den Antennen wird eine Spannung von 5 V eingespeist, die über alle weiteren Verstärkerstufen bis an den Auswerter weitergegeben wird. Liegt diese Spannung an, so werden die Statusbits DC1-OK bzw. DC2-OK gesetzt.

6.2 Voreinstellungen

Um den Auswerter unter den unterschiedlichsten Bedingungen betreiben zu können, ohne Änderungen auf der Auswerterplatine vornehmen zu müssen, wurden die Eingangssignale normiert: Eine Eingangsamplitude von 1 V_{ss} steuert den Summenkanal und Differenzkanal zu 3/4 aus. Die CAN-Baudrate ist auf 125 Kbaud, die Node-ID auf 1 voreingestellt. Das maximale Eingangssignal aller Drahtströme mit anderen Frequenzen beträgt 5 V_{ss}.

Die unterschiedlichen Anlagenparameter (Lesehöhe, Drahtstrom) werden durch unterschiedlich dimensionierte / abgeglichene Antennen berücksichtigt.

Der Auswerter ist auf eine Frequenz von 10 kHz voreingestellt. Die Schwelle für die Berechnung von Abstandswerten ist auf 1000 Einheiten bezogen auf die Eingangsspannungen S1 bzw. S2 eingestellt. Liegt die entsprechende Summenspannung über diesem Wert, so wird das entsprechende Bit im Systemstatus gesetzt und die entsprechende LED CDx leuchtet auf. Die Voreinstellungen können mit Hilfe eines Terminals (z. B HyperTerm auf einem PC) geändert werden oder über die diversen SDOs des CANopen[®] Protokolls geändert werden (siehe Tabelle 26 auf Seite 38).

Die beiden gleichwertigen Kanäle des Auswerters sind auf gleiche Werte voreingestellt.

6.3 Signalverarbeitung

Die 4 Spannungen der 4 Kanäle werden alle 500 µs abgetastet und über einen Zeitraum von 8 ms aufaddiert. Alle 10 ms werden die Werte dem CANopen[®] bzw. Profibus Protokoll zur Verfügung gestellt. Es werden normierte Abstände (in mm) ausgegeben. Die Berechnung der Abstände erfolgt durch Quotientenbildung (stromkompensiert).

Durch die Verwendung eines 10-Bit A/D- Wandlers und die 16-fache Überabtastung, ergibt sich der Wertebereich für die Summenspannung zu 16384 und für die Differenzspannung zu ±8192.

Weil innerhalb dieses Bereichs noch die DC-Offsets der Kanäle ausgeglichen werden müssen, ist ein Bereich von ca. 16000 bzw. ±8000 Einheiten nutzbar. Genauere Informationen finden Sie in Kapitel auf Seite 30 (CAN Interface) und Kapitel auf Seite 47 (Profibus).

6.4 Kontroll-LEDs

Auf der Frontplatte befindet sich eine Gruppe von 5 LEDs.

Bild 2 Lage der LEDs

- Die grüne LED (PWR) zeigt die Betriebsspannung des Geräts an.
- Die gelben LEDs (CD1, CD2) zeigen das Überschreiten der Summenspannung über die eingestellten Schwellwerte für die Kanäle 1 und 2 an.

Die grüne LED (BUS) und die rote LED (ERR) unterscheiden sich in ihrer Bedeutung je nachdem, ob ein CANopen® oder ein Profibus Interface vorhanden ist:

6.4.1 CAN-Bus (HG G-73350)

- Die grüne LED (BUS) blinkt nach dem Einschalten. Sie zeigt den Gerätestatus an:
 - Node stop: langsames blinken,
 - Node reset communication sowie node pre-operational: schnelles blinken,
 - Node operational: LED leuchtet kontinuierlich.
- Die rote LED (ERR) blinkt bei CAN-Bus Fehlern. Zusätzlich zeigt eine blinkende ERR LED einen Fehler im Parametersatz an.

6.4.2 Profibus (HG G-73351)

- BUS: Grün, leuchtet bei Datenaustausch mit dem Profibus Master.
- ERR: Rot, zeigt folgende Fehlerzustände an:
 - EEPROM Parameter Prüfsumme nicht korrekt.

- Profibus Protokollchip Hardware-Fehler.
- Profibus Buffer Fehler, falls andere als im GSD-File vorgegebene Module projektiert wurden.
- CD1 / CD2 leuchtet zusätzlich falls Summenpegel vorhanden ist aber ein Kabelbruch auf dem Differenzkanal detektiert wurde.

Software

7.1 Anschluss an einen PC über die serielle Schnittstelle

Der Auswerter verfügt über eine serielle Schnittstelle zur Diagnose, Parametrierung und zum Softwareupdate, die über den 5-poligen Stecker PWR RS232 genutzt werden kann. Es wird ein PC mit serieller RS232 Schnittstelle benötigt. Bei PCs, die keine serielle Schnittstelle haben, empfiehlt sich der Einsatz eines USB auf RS232 Adapters, der im Fachhandel erhältlich ist.

Die serielle Schnittstelle des Auswerters wird mit folgenden Übertragungsparametern betrieben. Diese müssen z. B. im Terminalprogramm auf dem PC (s. u.) eingestellt werden.

 Tabelle 7
 Übertragungsparameter der seriellen RS232
 Schnittstelle

Einstellung	
Bits pro Sekunde	38.400
Datenbits	8
Parität	gerade
Stopp Bits	1
Terminalemulation	ANSI

7.2 Terminalprogramm

Es kann jedes kompatible Terminalprogramm verwendet werden, Beispiele sind HyperTerminal[®] oder Tera Term[®]. HyperTerminal war in früheren Versionen von Microsoft[®] Windows[®] enthalten. Es kann außerdem für alle Windows[®] Versionen unter folgender Adresse im Internet heruntergeladen werden:

https://www.hilgraeve.com/hyperterminal/

7.3 Monitorprogramm

Verbinden Sie wie oben beschrieben den PC mit dem Auswerter und starten Sie das Terminalprogramm auf dem PC, achten Sie darauf, dass die oben genannten Übertragungsparameter eingehalten werden. Das Monitorprogramm des Auswerters können Sie dann durch Eingabe von 'm' oder M im Terminalprogramm aufrufen.

7.3.1 Hauptmenü

Es baut sich je nach Variante eins der folgenden beiden Menüs auf:

Bild 4 Screenshot: Hauptmenü des Monitorprogramms (HG G-73350 mit CAN-Bus)

```
S1: 1 D1: -10 S2: 10816 D2: -4403 X1:-256 mm X2: -50 mm Status: 0x40
    (1) Select Antenna System 1
    (2) Select Antenna System 2
    (C)AN Menue
    (L)oad Values to EEProm
    (0)utput CSV-Data (press 'a' to abort)
    (U)pdate Firmware
    (S)ervicemenue
    (Q)uit
Software Version 73350A01.05 / 15.MAR.2005 Serial Number: 9999999
```

Bild 5 Screenshot: Hauptmenü des Monitorprogramms (HG G-73351 mit Profibus)

```
S1: 6418 D1: 65 S2: 0 D2: -16 X1: +0 X2: -256 Status: 0x80
(1) Select Antenna System 1
(2) Select Antenna System 2
(P)rofibus Menu
(L)oad Values to EEProm
(0)utput CSV-Data (press 'a' to abort)
(U)pdate Firmware
(S)ervicemenue
(Q)uit
Software Version 73351A01.00 / 03.SEP.2008 Serial Number: 7385277
```

Die obersten beiden Zeilen zeigen die Eingangswerte an.

S1, S2, D1, D2

Die Werte für S1, D1, S2, und D2 sind jeweils die Summen über 16 Abtastungen. Der Bereich liegt für die Summenspannungen bei 0 bis 16383 und für die Differenzspannungen bei -8192 bis +8191.

X1, X2

Die in Millimeter berechneten Werte für den jeweiligen seitlichen Versatz der Antennen über dem Leitdraht im Bereich -255 bis +255. Falls die Spannungen für S1 bzw. S2 unter der eingestellten Schwelle liegen, wird für den entsprechenden Abstand -256 angezeigt.

Status

Hexadezimale Ausgabe von binären Systemzuständen, wie sie auch im seriellen Telegramm, in PDO_1 (CAN) oder über Profibus ausgegeben werden.

Tabelle 8 Bedeutung der möglichen Werte der Statusausgabe

Hex Wert	Bedeutung
0x80	S1 hat die eingestellte Schwelle für Kanal 1 überschritten
0x40	S2 hat die eingestellte Schwelle für Kanal 2 überschritten
0x20	nicht belegt
0x10	Kalibrierung gestartet
0x08	DC1_OK (Differenzkanal 1 galvanisch mit Auswerter verbunden)
0x04	DC2_OK (Differenzkanal 2 galvanisch mit Auswerter verbunden)
0x02	nicht belegt
0x01	Die Prüfsumme der Parameter stimmt nicht.

Beispiel Falls 0xCC ausgegeben wird, wurden bei beiden Kanälen die Schwellen überschritten und beide Differenzkanäle sind funktionsfähig.

Menüauswahl

- Durch Eingabe von 1 bzw. 2 werden Untermenüs für die beiden Antennensysteme angewählt, s. 7.3.2 auf Seite 24.
- Mit C wird das CAN-Menü aufgerufen, s. 7.3.3 auf Seite 25.
- Mit 🖻 wird das Profibus-Menü aufgerufen, s. 7.3.4 auf Seite 27.
- Veränderte Parameter können im EEProm durch Eingabe von 🕒 gespeichert werden. Dazu muss direkt anschließend zur Bestätigung das Passwort 815 eingegeben werden.
- Um Daten zu protokollieren, kann die Ausgabe durch 🖸 in den CSV-Modus (Comma Separated Values) umgestellt werden. Es werden dann die Werte der Statuszeile – durch Komma getrennt und mit CrLF abgeschlossen – ausgegeben (Beispiel):

44,0,-15,9627,-3335,-256,50

44,0,-17,9626,-3333,-256,51

In diesem Beispiel bedeutet die erste Zahl "44" den hexadezimalen Gerätestatus (hier Schwelle 2 überschritten), danach Us1 = 0 und Ud1 = -17, anschließend Us2 = 9626 und Ud2 = -3333. Als letzte Zahlen werden noch die berechneten seitlichen Abweichungen in mm für Antenne 1 und Antenne 2 ausgegeben. Falls kein Draht detektiert wurde, wird für den entsprechenden Abstandswert -256 ausgegeben.

Durch Nutzung der Textspeicherfunktion von Hyperterm können die Daten mitgeloggt werden. Die Eingabe von 🛆 beendet diese Ausgabe.

- Mit dem Menüpunkt Update Firmware kann ein Firmware Update durchgeführt werden, s. Abschnitt 7.5 auf Seite 28.
- Das Servicemenü beinhaltet keine vom Anwender einstellbaren Funktionen.

7.3.2 Antennenmenü

Im Folgenden wird das Antennenmenü 1 erläutert. Das Menü für Antenne 2 ist identisch.

	Bild 6	Screenshot: Antenneni	neni
--	--------	-----------------------	------

- Mit E kann die Frequenz im Bereich von 1 bis 28 kHz geändert werden. Es ist aber zu beachten, dass die Antenne HG 19210-C in einem Bereich von 3 bis 25 kHz arbeitet.
- Mit D wird die Schwelle bezogen auf die Summenspannung eingestellt, nach deren Überschreitung die Front LEDs CDx und die entsprechenden Bits im Systemstatus gesetzt werden.
- Mit H wird der Abstand zwischen Leitdraht und Sensorunterkante eingegeben.
- Mit I wird die f
 ür jeden Antennentyp angegebene interne H
 öhe eingegeben.

Die Abstandsberechnung erfolgt mit der Summe der unter 🖽 und 🗋 eingegebenen Höhenwerte.

- Mit C wird die Kalibrierung der Abstandsausgabe gestartet. Dazu muss die entsprechende Antenne in der Höhe, wie sie auch in obigem Menüpunkt eingegeben ist, im Bereich ±2 x Höhe über den Leitdraht geschwenkt werden. Die Kalibrierung sollte bei 10 kHz Drahtfrequenz durchgeführt werden, da auch die Frequenzkompensation auf diese Frequenz bezogen wird.
- Mit 🖸 gelangt man wieder in das Grundmenü.

i

Kalibrierungsmenü

Das Kalibrierungsmenü (hier für Antenne 1) ist folgendermaßen aufgebaut:

		Bild	7 Scr	eenst	not: An	tenne	nkalibr	ierung	smer	านิ			
S1:	3780	D1:	3617	S2:	3133	D2:	4590	X1:	+62	X2:	+99	Status:	0xc0
Us1:	3	795	Udl1:		Θ	Udri	1: 3	3645					
shif	t Ant	enna 1	from -	2*H t	o +2*H	and p	oress a	any ke	y whe	n rea	dy		

, ,,, ,

Bei der Kalibrierung werden in Us1 die Maximalwerte der Spannung S1, in Udl1 und Udr1 die Maximalwerte der Spannung D1 links und rechts vom Draht gespeichert. Dazu muss der Sensor z. B. bei 60 mm Lesehöhe ±120 mm über den Draht geschwenkt werden. Dies entspricht immer einem Wert von der Lesehöhe multipliziert mit 2.

Nach Betätigen einer Taste werden aus den Maxima unter Berücksichtigung der im Antennenmenü eingegebenen Lesehöhe die Kalibrierwerte berechnet. Im Hauptmenü müssen die Werte mit 🕒 permanent gespeichert werden.

7.3.3 CAN-Menü (HG G-73350)

Allgemeine Informationen zum CAN-Bus und den unten genutzten Begriffen finden Sie in Abschnitt 8.1 auf Seite 30. Das CAN-Menü ist folgendermaßen aufgebaut:

Bild 8	Screenshot:	CAN-Menü	(HG G-73350)

S1:	0 D1	: -6	S2:	0	D2:	-40	X1:	-256	X2: -256	Status:	0×00		_
Bus	online	0perati	onal		Last	Err:	0000						
	(N)00	de ID					[1.	.127]:	1				
	CAN-	(B)audrat	e[20,5	0,125	,250,5	00,800),1000	9 kB]:	500				
	(C)	TPDO_1 mc	ode			[1.	.240	,255]:	255				
	(D) ⁻	TPDO_1 in	hibit	time	E	0,10	10000	9 ms]:	Θ				
	(E) ⁻	TPDO_1 ev	ent ti	me	E	0,10	10000	9 ms]:	10				
	(F) ⁻	TPDO_2 mc	ode			[1.	.240	,255]:	255				
	(G) ⁻	TPDO_2 in	hibit	time	E	0,10	10000	9 ms]:	Θ				
	(H) ⁻	TPDO_2 ev	ent ti	me	E	0,10	10000	9 ms]:	10				
	(I) I	Heartbeat	: time			[0	6553	5 ms]:	Θ				
	(A)u	tostart							1				
	(L)0\	wbyte fir	st						Θ				
	(Q)u	it											

Zusätzlich zur oben beschriebenen Statuszeile wird der CAN-Bus Zustand angezeigt: Bus online wechselt zu Bus offline falls z. B. der CAN-Busstecker gezogen wird oder wegen fehlendem Abschlusswiderstand der CAN-Controller in den BUSOFF-Zustand geht. Daneben wird der CAN open Node Zustand stopped, pre-operational oder operational angezeigt. In diesem Menü wird mit

- 🔊 die Nodeadresse im Bereich 1 bis 127 gewählt.
- B eine der aufgelisteten Baudraten ausgewählt. Die Funktion Autobaud ist nicht implementiert.
- C die PDO_1 Betriebsart gewählt. Hier kann mit den Werten 1 bis 240 die synchrone, zyklische bzw. mit 255 die asynchrone Betriebsart eingestellt werden. Die folgenden beiden Menüpunkte sind nur in der asynchronen Betriebsart vorhanden:
 - D die Inhibit-Zeit des PDO_1. In PDO_1 werden der Systemstatus und die berechneten Abstände übertragen. Die Inhibit-Zeit ist die kürzest mögliche Zeitspanne zwischen 2 aufeinanderfolgenden Übertragungen.
 - E die Zykluszeit der PDO_1 Übertragung. Falls beide Werte gleich 0 sind, wird PDO_1 nicht übertragen.
- E die PDO_2 Betriebsart gewählt. Hier kann mit den Werten 1 bis 240 die synchrone, zyklische bzw. mit 255 die asynchrone Betriebsart eingestellt werden. Die folgenden beiden Menüpunkte sind nur in der asynchronen Betriebsart vorhanden:
 - G die Inhibit-Zeit des PDO_2. In PDO_2 werden die 4 analogen Antennenspannungen übertragen. Die Inhibit-Zeit ist die kürzest mögliche Zeitspanne zwischen 2 aufeinanderfolgenden Übertragungen.
 - — I die Zykluszeit der PDO_2 Übertragung. Falls beide Werte gleich 0 sind, wird PDO_2 nicht übertragen.
- I die sogenannte Heartbeat time verändert. Mit dieser Zykluszeit wird eine Kontrollnachricht gesendet. Mit der Zeit gleich 0 wird diese Nachricht unterdrückt.
- A die Autostartfunktion (de)aktiviert.
 - Ist Autostart deaktiviert, so wird nach dem Einschalten nur die Heartbeat Nachricht (falls aktiviert) gesendet; das Gerät befindet sich im Zustand preoperational.
 - Ist Autostart aktiviert, werden nach dem Einschalten sofort die PDOs und die Heartbeat Nachricht (falls aktiviert) gesendet; das Gerät befindet sich im Zustand operational.
- L die Bytereihenfolge in den PDOs verändert: Mit Lowbyte first = 1 wird das niederwertige Byte eines 16 Bit Wortes zuerst übertragen.

7.3.4 Profibus-Menü (HG G-73351)

Die Spezifikationen der Profibus-Telegramme finden Sie in Kapitel auf Seite 47. Das Profibus-Menü ist folgendermaßen aufgebaut:

```
Bild 9 Screenshot: Profibus-Menü (HG G-73351)
```

```
65 S2:
                                 0 D2:
                                           -13 X1: +0 X2: -256 Status: 0x80
S1:
    6453 D1:
                                   Profibus-Status: NO ERROR
Byte
     #
        Master-Input
   0
             80
             00
   1
                                                  [0..126]:
   2
                                (N)ode ID
             00
                                                                  2
   3
             00
                                (L)owbyte first
                                                                  0
   4
             ff
                                (Q)uit
Byte
     #
        Master-Output
   0
             \Theta \Theta
             00
   1
   2
             00
   3
             00
```

In diesem Menü wird mit:

- Mie Nodeadresse im Bereich 0 bis 126 gewählt.
- L die Bytereihenfolge der Variablen X1, X2, F1 und F2 in den Master-Input und -Output Datenfeldern vertauscht. Mit (L)owbyte first = 1 wird das niederwertige Byte eines 16 Bit Wortes zuerst übertragen.
- Mit Ouit gelangt man wieder ins Grundmenü.

Außerdem werden in diesem Menü die Inhalte der Master-Input bzw. -Output Bytes angezeigt, falls sie projektiert wurden. Zusätzlich wird der Profibuszustand ausgegeben.

7.4 Einstellung auf andere Umgebungsparameter

Der Auswerter kann auch für Spurführungssysteme mit anderen Leitdrahtströmen und Lesehöhen eingesetzt werden. Geringfügige Änderungen der Umgebungsparameter (z. B. Leitdrahtstrom 35 mA bis 100 mA bei gleicher Lesehöhe) werden durch den Dynamikumfang des Geräts ausgeglichen

Die unterschiedlichen Leitdrahtströme, Leiterabstände und Lesehöhen werden durch Ändern der Verstärkungsfaktoren in den Antennen angepasst. Dazu das Monitorprogramm starten und die in den oberen Zeilen angezeigten Spannungen Sx bzw. Dx für das entsprechende Antennensystem beachten.

Das Maximum der Summenspannung tritt über dem Leiter auf. Mit dem entsprechenden Antennenpoti bei minimaler Lesehöhe auf ca. 12000 Einheiten trimmen. Das Maximum der Differenzspannung tritt in einem der Höhe entsprechendem seitlichen Abstand vom Leiter auf. Mit dem entsprechenden Antennenpoti bei minimaler Lesehöhe auf ca. 6000 Einheiten trimmen.

7.5 Firmwareupdate

Der verwendete Prozessor verfügt über einen Flashloader und kann über die serielle Schnittstelle mit der Firmware programmiert werden. Dazu muss die serielle Verbindung zum PC hergestellt sein.

1. Stellen Sie die Verbindung mit HyperTerm her.

Es muss die XON/XOFF Flusskontrolle aktiviert sein.

2. Starten Sie wie zu Beginn des Kapitels beschrieben die Hauptmenüebene des Auswerters und wählen Sie den Programmpunkt Update Firmware. Geben Sie dann das Passwort 815 ein.

Auf dem Bildschirm erscheint folgendes Bild:

Bild 10 Screenshot: Firmwareupdate

Warten Sie nun bis das Löschen des Flashspeichers durch ein <R> gemeldet wird und wählen Sie dann in Hyperterm den Programmpunkt <Übertragung> <Textdatei senden> und geben Sie hier den Namen der zu programmierenden Firmware an. Nach Eingabe wird das Fortschreiten der Programmierung durch <.> Punkte angezeigt, das Zeichen O zeigt das Ende der Programmierung an.

Bild 11 Screenshot: Firmwareupload

Please wait for 'R' and transfer Intel-Hex file as ASCII upload
Flash Loader T89C51CC03 (c)GoettingKG 18.10.04
1335040
PR
0

Anschließend wird die neue Firmware sofort gestartet. Falls die Übertragung gestört wurde, ist die neue und alte Firmware nicht mehr im Gerät vorhanden. Der Flashloader ist jedoch immer verfügbar und startet dann nach dem erneuten Einschalten automatisch.

CAN-Interface (HG G-73350)

Die Node-ID und die Übertragungsrate müssen über den in Abschnitt 7.3 auf Seite 21 beschriebenen seriellen Monitor oder die entsprechenden SDOs gewählt werden.

Die Messwerte des Systems werden über 2 sogenannte TxPDOs übertragen. Die Parametrierung geschieht über SDOs. Zusätzlich können die beiden Drahtfrequenzen über ein azyklisches RPDO verändert werden. Die CAN-Identifier werden aus der Nodeadresse (1 bis 127) abgeleitet.

8.1 Begriffsbestimmungen CAN und CANopen®

Die CAN bzw. CANopen® Konfiguration ist nach ISO 11898 bzw. EN 50325-4 aufgebaut. Als kleine Hilfestellung werden in diesem Abschnitt wichtige Begriffe und Abkürzungen erläutert. Für genauere Informationen können sie die Normen herbeiziehen oder unter

http://www.can-cia.org/en/standardization/technical-documents/

nach einer kostenlosen Registrierung die technische Spezifikationen des CANopen® Standards herunterladen. Für Geräte, die CANopen® unterstützen, werden auf der Internetseite der Götting KG EDS (Electronic Data Sheet) Files zum Download angeboten. In diesen ist die komplette Konfiguration hinterlegt. Um auf EDS Files zuzugreifen, kann zum Beispiel CANopen® Magic von PEAK System benutzt werden:

http://www.canopenmagic.com

Tabelle 9 Parameter PDO-Betriebsart

Wert	zyklisch	azyklisch	synchron	asynchron	nur auf Anforderung (RTR)
0		х	х		
1-240	х		х		
241-251	reserviert				
252			х		х
253				х	х
254				х	
255				х	

Achten sie darauf, dass nicht jedes Gerät jede Betriebsart unterstützt. Geräte der Firma Götting unterstützen im Normalfall die Betriebsmodi 1 bis 240 und 255.

Tabelle 10 PDO Betriebsarten

Betriebsart	Erklärung
Zyklisch	Jedes n-te Sync Telegramm werden Daten übertragen
Azyklisch	Sendet, wenn seit dem letzten Sync Telegramm ein Ereignis aufge- treten ist
Synchron	Daten werden nach Erhalt eines Sync Telegramms übertragen
Asyncron	Daten werden ereignisgesteuert übertragen
RTR	Ausschließlich auf Anforderung durch ein Remote Frame
Inhibit Time	Minimale Zeitspanne, die vor dem nächsten Versenden des selben PDO vergehen muss
Event Time	Löst bei Ablauf ein Ereignis aus. Wird nach jedem Ereignis neu gestartet.

Tabelle 11 Begriffserklärungen CAN/CANopen®

Abkürzung	Name	Bedeutung
PDO	Prozessdaten Objekte	Maximal 8 Byte Prozessdaten
TxPDO	Transmit-PDO	Die von einem Gerät gesendeten Pro- zessdaten
RxPDO	Receive-PDO	Die von einem Gerät empfangenen Prozessdaten
SDO	Servicedaten Objekte	Dient zum Auslesen und Beschreiben von Geräteparametern. Keine Größen- beschränkung
Sync	Synchronisationstelegramm	Busweites Telegramm, das vom CANo- pen® Master geschickt wird
-	CAN-Identifier	Die Adresse, auf der ein PDO,SDO gesendet wird
-	Node ID	Bei CANopen [®] die Adresse des Gerä- tes, die zum CAN-Identifier dazuge- rechnet wird

Tabelle 12 Bit und Byte Reihenfolgen

Name	Bedeutung
Low Byte First	Little-Endian-Format, Intel Format Das jeweils kleinstwertige Byte eines Mehrbyte Wertes wird zuerst gesendet
High Byte First	Big-Endian-Format, Motorola Format Das jeweils höchstwertige Byte eines Mehrbyte Wertes wird zuerst gesendet
Linksbündig	Reihenfolge der Bits in einem Byte von Links (höchstwertig) nach rechts (kleinstwertig)

i

Tabelle 13 CANopen[®] Betriebszustand

Name	Bedeutung			
Stopped	Nur Netzwerkmanagementdienste ausführbar			
Pre-Operational	Volle Konfiguration möglich, kein Versenden von PDOs			
Operational	Volle Konfiguration möglich, eingestellte PDOs werden ver- sendet			

Achten sie darauf, dass ein CAN Identifier bzw. bei CANopen[®] die Kombination CAN Identifier und Node Identifier immer eindeutig sein müssen!

8.2 Beschreibung der Prozessdaten Objekte (PDOs)

8.2.1 Sendeobjekte

Den Messwerten sind feste Plätze in den PDOs zugeordnet, ein dynamisches Mapping ist nicht vorgesehen. Die PDO-Betriebsart kann zyklisch - synchron oder asynchron eingestellt werden. Um in der asynchronen Betriebsart bei nicht-zyklischer Übertragung (Event-Time = 0) eine zu hohe Busbelastung durch ständige Wechsel zu vermeiden, kann die sogenannte Inhibit-Time im CAN-Menü des seriellen Monitors eingestellt werden (siehe Abschnitt 7.3.3 auf Seite 25). Ein PDO kann aber auch zyklisch übertragen werden. Dafür ist die Event-Time entsprechend zu wählen und für die Inhibit-Time 0 einzugeben.

Ein TxPDO kann permanent deaktiviert werden durch Wahl der asynchronen Betriebsart (255) mit Inhibt-Time = 0, Event_time = 0 und Speichern der Parameter. Zusätzlich kann es durch Setzen/Löschen des höchstwertigen Bits im entsprechenden PDO-COB-Identifier [1800,01] bzw. [1801,01] vorübergehend deaktiviert/aktiviert werden.

8.2.1.1 PDO_1

PDO_1 wird mit dem Identifier 0x180 + Node-Adresse gesendet. Es enthält 5 Bytes, in denen der im seriellen Monitor angezeigten Status und die beiden Abstandswerte (linksbündig) enthalten sind. Die Übertragungsreihenfolge ist Status, X1, X2.

Die Bytereihenfolge innerhalb der 16-Bit Wörter kann über das CAN-Menü mit Punkt (siehe Abschnitt 7.3.3 auf Seite 25) oder das SDO mit dem Index 0x2002,03 (Node Config) verändert werden.

Tabelle 14 CAN: Zahlendarstellung für PDO_1

Wert	Format	Wertebereich	Bemerkung		
Status	unsigned 8	00xff	Statusbits gemäß Tabelle 15		
X1	signed 16	-32640+32640	-128 x 255 [mm]+128 x 255 [mm] *)		
X2	signed 16	-32640+32640	-128 x 255 [mm]+128 x 255 [mm] *)		
*) Hinweise zu der Umrechnung der Abstandswerte finden Sie unter Tabelle 15 unten.					

Die Bedeutung der Statusbits ist folgendermaßen festgelegt:

Fabelle 15	CAN: Bedeutung des Statusbits	
-------------------	-------------------------------	--

Bitnummer	Wertigkeit	Bedeutung
7	0x80	Us1 hat die eingestellte Schwelle für Kanal 1 über- schritten
6	0x40	Us2 hat die eingestellte Schwelle für Kanal 2 über- schritten
5	0x20	Toggle-Bit, wechselt seinen Zustand nach jeder Über- tragung von PDO_1
4	0x10	Kalibrierung ist aktiv
3	0x08	DC-Überwachung Ud1 ist OK
2	0x04	DC-Überwachung Ud2 ist OK
1	0x02	Nicht benutzt
0	0x01	Die Prüfsumme der EEProm-Parameter stimmt nicht.

Der Auswerter arbeitet intern mit einem *signed int16* für die Angabe des Abstands vom Leitdraht. Dabei ist das MSB (Most Significant Bit) linksbündig angeordnet, es ist also bei signed int16 allein für das Vorzeichen zuständig: 1 für negative Zahlen, 0 für positive.

Unmittelbar nach dem MSB folgen 8 Bit für die Darstellung des Abstandswertes (grün markierter Bereich der Tabellen), der Rest der niederwertigen verfügbaren Bits wird mit 0 aufgefüllt. Der Abstandswert ist also eigentlich eine vorzeichenbehaftete 9-Bit-Zahl, die um 7 Stellen "nach links" geschoben wurde, was einer Multiplikation mit 128 (2^7) entspricht.

Tabelle 16 CAN: Berechnung negativer Abstandswerte (Beispiel: Maximum)

 Tabelle 17
 CAN: Berechnung positiver Abstandswerte (Beispiel: Maximum)

MSB															LSB
0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0
255			-						x 12	28	-	-	-	-	
= 32640)														

Der Abstandswert bewegt sich damit zwischen -32640 (-255 x 128) und 32640 (255 x 128); er verändert sich mit jedem Millimeter Abstandsänderung um 128. Um aus dem internen Abstandswert einen Millimeter-Wert zu erhalten, muss man also die 16-Bit-Zahl durch 128 teilen.

Ĭ

Bei Verlust des Leitdrahtes wird -256 mm zurückgegeben, was einem internen Wert von -32768 (-256 x 128) entspricht.

Tabelle 18 CAN: Abstandsangabe bei Verlust des Leitdrahts

MSB															LSB
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-256									x 12	28					
= -32768	3														

Über die RS232-Schnittstelle wird generell der Millimeter-Wert angezeigt, während bei der Abfrage des Auswerters über CAN-Bus der interne Wert zurückgegeben wird (der noch durch 128 geteilt werden muss). Der folgenden Tabelle können einige Beispiele entnommen werden.

Tabelle 19 CAN: Beispielwerte für die Abstandsausgabe

Interner W	'ert	Abstand in mm	
Dezimal	Binär	Hexadezimal	Abstanu in min
-25600	1001 1100 0000 0000	9C00	-200
-10240	1101 1000 0000 0000	D800	-80
2560	0000 1010 0000 0000	0A00	20
15360	0011 1100 0000 0000	3C00	120

8.2.1.2 PDO_2

PDO_2 wird mit dem Identifier 0x280 + Node-Adresse gesendet. Es enthält genau vier 16-Bit Wörter (linksbündig) in der Reihenfolge Us1, Ud1, Us2, Ud2. Der zu empfangende Synchron-Identifier ist 0x80. Er kann unter Index [1005,00] ausgelesen werden.

Tabelle 20 CAN: Zahlendarstellung für PDO_2

Kanal	Format	Wertebereich
Us1	Unsigned 16	065532
Ud1	signed 16	-32768+32764
Us2	Unsigned 16	065532
Ud2	signed 16	-32768+32764

Die in PDO_2 übertragenen Werte basieren auf den in der Statuszeile des Monitorprogramms gezeigten Werten, werden aber nach folgendem Schema umgerechnet:

Tabelle 21 Beispiel f ür die Umrechnung in PDO_2 (Abschnitt 1 von 2)

Kanal	Im Monitor	Wert in PDC)2 *)	Bemerkung				
Nallai	gezeigter Wert	Monitor x 4	Нех	Demerkung				
Us	3000	12000	2EE0	Beispiel				
	12000	48000	BB80	Praktische Aussteuergrenze				
	16383	65532	FFFC	absoluter Maximalwert				

Konol	Im Monitor	Wert in PDC)2 *)	Remerkung	
Nanai	gezeigter Wert	Monitor x 4	Hex	Demerkung	
Ud	-1000	-4000	F060	Beispiel	
	1000	4000	07A0		
	-6000	-24000	A240	Praktische Aussteuergrenze	
	6000	24000	5DC0		
	-8192	-32768	8000	absoluter Maximalwert	
	8191	32764	7FFC		
*) Dars 8 auf S	stellung der Werte Seite 25)	e in der Reihei	nfolge Low	vbyte first = 0 (s. CAN Menü in Bild	

Tabelle 21	Beispiel	für die	Umrechnung	in PDO	2 (Abschnitt 2 von 2	2)
------------	----------	---------	------------	--------	-----	-------------------	----

8.2.2 Empfangsobjekte

Die Drahtfrequenzen können auch über ein azyklisches Empfangs-PDO verändert werden. Das RPDO kann vorübergehend durch Setzen/Löschen des höchstwertigen Bits im entsprechenden PDO-COB Identifier [1400,01] deaktiviert/aktiviert werden.

Das RPDO wird auf dem Identifier 0x200 + Node-Adresse erwartet. Es enthält 4 Bytes für die Frequenzen F1 und F2 in Hz. Die Bytereihenfolge innerhalb der 16-Bit Wörter kann über das CAN-Menü Punkt () (siehe Abschnitt 7.3.3 auf Seite 25) oder das SDO mit dem Index 0x2003,03 (Node-Config) verändert werden.

Tabelle 22 CAN: Zahlendarstellung für RPDO

Wert	Format	Wertebereich	Bemerkung
F1	Unsigned 16	100028000	Drahtfrequenz Kanal 1
F2	Unsigned 16	100028000	Drahtfrequenz Kanal 2

Falls Werte außerhalb des vorgesehenen Wertebereichs übertragen werden, so werden diese ignoriert. Frequenzänderungen werden mit der in den Technischen Daten genannten Umschaltzeit durchgeführt.

8.3 Heartbeat

Das Gerät unterstützt den Heartbeat-Mode. Wenn im CAN-Menü eine Heartbeat-Time > 0 eingestellt wird, wird mit Ablauf des Heartbeat-Timers der Gerätezustand unter dem Identifier 0x700 + Node-Adresse gesendet.

Tabelle 23 CAN: Heartbeat Gerätezustände

Gerätezustand	Code
stopped	0x04
pre-operational	0x7f
operational	0x05

8.4 Beschreibung der Servicedaten Objekte (SDOs)

Für Zugriffe auf das Objektverzeichnis wird das Service-Daten-Objekt verwendet. Ein SDO wird bestätigt übertragen, d. h. jeder Empfang einer Nachricht wird quittiert. Die Identifier für Lese- und Schreibzugriff sind:

Lesezugriff: 0x600 + Node - Adresse,

Schreibzugriff: 0x580 + Node - Adresse.

Die SDO-Telegramme sind in der CiA Norm DS-301 beschrieben. Die Fehlercodes auf Grund einer fehlerhaften Kommunikation sind in der folgenden Tabelle aufgeführt:

Tabelle 24 CAN: SDO Fehlercodes

Name	Nummer	Bedeutung
SDO_ABORT_UNSUPPORTED	0x06010000	Nicht unterstützter Zugriff auf ein Objekt
SDO_ABORT_READONLY	0x06010001	Schreibzugriff auf ein Readonly- Objekt
SDO_ABORT_NOT_EXISTS	0x06020000	Objekt ist nicht implementiert
SDO_ABORT_TRANSFER	0x08000020	Beim Speichern und Laden von Parametern wurde nicht die Sig- natur "load" oder "save" verwen- det. Beim Aufruf der Kalibrierung wurde nicht die Signatur "cali" verwendet.
SDO_ABORT_PARA_VALUE	0x06090030	Parameterwertebereich über- schritten
SDO_ABORT_PARA_TO_HIGH	0x06090031	Parameterwert zu hoch

8.5 Objektverzeichnis

Im CANopen[®] Objektverzeichnis werden alle für das Gerät relevanten Objekte eingetragen. Jeder Eintrag ist durch einen 16 Bit Index gekennzeichnet. Unterkomponenten sind durch einen 8 Bit Subindex gekennzeichnet. Durch RO werden nur lesbare Einträge gekennzeichnet.

i

Communication Parameter sind in den Übersichtstabellen mit **C** gekennzeichnet, Manufacture Parameter mit **M**.

Das Objektverzeichnis ist in folgende Bereiche eingeteilt:

8.5.1 Kommunikationsspezifische Einträge

 Tabelle 25
 CAN: Übersicht über das Objektverz., kommunikationsspezifische Einträge im Bereich 0x1000 bis 0x1FFF (Abschnitt 1 von 3)

Kommunikationsspezifische Einträge im Bereich 0x1000 bis 0x1FFF								
Index	Subindex	Zugriff	Inhalt	EEProm				
0x1000	0	RO	Device Typ					
0x1001	0	RO	Error Register					
0x1005	0	RO	COB ID Sync Message					

GÖTTING

Inday	Subinday	Zugriff	Inhalt	EEDrom
Index	Subindex	Zugrim	innait	EEProm
0x1008	0	RO	Number of Entries of Device Name	
	1	RO	Device Name 1	
	2	RO	Device Name 2	
	3	RO	Device Name 3	
0x1009	0	RO	Hardware Version	
0x100A	0	RO	Software Version	
0x1010	0	RO	Number of entries of Save Parameter	
	1	RW	Save all	
0x1011	0	RO	Number of entries of Restore Default Parameter	
	1	RW	Restore Default all	
	2	RW	Restore Default Communication Para- meter	
	4	RW	Restore Default Manufacture Parame- ter	
0x1017	0	RW	Producer Heartbeat Time	С
0x1018	0	RO	Number of entries of Identity Object	
	1	RO	Vendor ID	
	2	RO	Product Code	
	3	RO	Revision	
	4	RO	Serial Number	
0x1400	0	RO	Number of Entries of Receive PDO_1	
	1	RW*	COB-ID	
	2	RO	Transmission Type	
0x1600	0	RO	Number of Objects mapped to Receive PDO_1	
	1	RO	Specification of Appl. Object 1	
	2	RO	Specification of Appl. Object 2	
0x1800	0	RO	Number of entries of Transmit PDO_1	
	1	RW*	COB-ID	
	2	RW	Transmission Type	С
	3	RW	Inhibit Time	С
	5	RW	Event Time	С
0x1801	0	RO	Number of entries of Transmit PDO 2	
	1	RW*	COB-ID	
	2	RW	Transmission Type	С
	3	RW	Inhibit Time	С
	5	RW	Event Time	С

Tabelle 25CAN: Übersicht über das Objektverz., kommunikationsspezifische Einträge im
Bereich 0x1000 bis 0x1FFF (Abschnitt 2 von 3)

Tabelle 25	CAN: Übersicht über das Objektverz., kommunikationsspezifische Einträge im
	Bereich 0x1000 bis 0x1FFF (Abschnitt 3 von 3)

Kommunikationsspezifische Einträge im Bereich 0x1000 bis 0x1FFF									
Index	Subindex	Zugriff	Inhalt	EEProm					
0x1A00	0	RO	Number of Objects mapped to Trans- mit PDO_1						
	1	RO	Specification of Appl. Object 1						
	2	RO	Specification of Appl. Object 2						
	3	RO	Specification of Appl. Object 3						
0x1A01	0	RO	Number of Objects mapped to Trans- mit PDO_2						
	1	RO	Specification of Appl. Object 1						
	2	RO	Specification of Appl. Object 2						
	3	RO	Specification of Appl. Object 3						
	4	RO	Specification of Appl. Object 4						
*) Hier ka zu (de)akt	nn nur das h tivieren.	öchste Bit	verändert werden, um den PDO vorüber	gehend					

8.5.2 Herstellerspezifische Einträge

 Tabelle 26
 CAN: Übersicht über das Objektverz., herstellerspezifische Einträge ab 0x2000

Herstelle	Herstellerspezifische Einträge ab 0x2000									
Index	Subindex	Zugriff	Inhalt	EEProm						
0x2000	0	RO	Number of Parameter							
	1	RW	Frequency 1	М						
	2	RW	Frequency 2	М						
	3	RW	Threshold CD1 LED	М						
	4	RW	Threshold CD2 LED	М						
	5	RW	Height of Ant 1	М						
	6	RW	Height of Ant 2	М						
	7	RW	Internal Height of Ant 1	М						
	8	RW	Internal Height of Ant 2	М						
0x2001	0	RO	Number of Parameter							
	1	W	Start Ant-1 calibration							
		R	Stop Ant-1 calibration							
	2	W	Start Ant-2 calibration							
		R	Stop Ant-2 calibration							
0x2002	0	RO	Number of Parameter							
	1	RW	Node Baudrate	С						
	2	RW	Node ID	С						
	3	RW	Node Config	С						

8.5.3 Standardisierter Geräteprofilbereich

Bei "Restore All" wird zusätzlich die Node-ID auf 1 und die Baudrate auf 125 Kbaud gesetzt.

 Tabelle 27
 CAN: Übersicht über das Objektverz., standardisierter Geräteprofilber. ab 0x6000

Standardisierter Geräteprofilbereich ab 0x6000									
Index	Subindex	Zugriff	Inhalt						
0x6000	0	RO	Number of 8 Bit Digital Inputs						
	1	RO	Systemstatus						
0x6401	0	RO	Number of 16 Bit analog Inputs						
	1	RO	Analog Input Us1						
	2	RO	Analog Input Ud1						
	3	RO	Analog Input Us2						
	4	RO	Analog Input Ud2						
	5	RO	X1 [mm]						
	6	RO	X2 [mm]						

8.5.4 CANopen[®] Object Dictionary

8.5.4.1 Device Type

 Tabelle 28
 CAN: Device Type

Index	Sub Index	Name	Тур	Attr.	Мар	Default	Bedeutung
0x1000	00	Device Type	Unsigned 32	RO	No	0x00050191	Digitale/analoge Inputs - DS 401

8.5.4.2 Error Register

Tabelle 29 CAN: Error Register

Index	Sub Index	Name	Тур	Attr.	Мар	Default	Bedeutung
0x1001	00	Error Register	Unsigned 8	RO	No	0x00	Fehler Register

Liefert immer 0 (kein Fehler)

8.5.4.3 COB-ID SYNC message

 Tabelle 30
 CAN: COB-ID SYNC message

Index	Sub Index	Name	Тур	Attr.	Мар	Default	Bedeutung
0x1005	00	COB-ID SYNC	Unsigned 32	RO	No	0x80000080	Sync Consumer, Sync ID = 0x80

8.5.4.4 Device Name

 Tabelle 31
 CAN: Device Name

Index	Subindex	Name	Тур	Attr.	Мар	Default	Bedeutung
0x1008	00	Device Name	Unsigned 8	RO	NO	3	Anzahl der Subindizees
	01	Name 1	VisString	RO	NO	"G_73"	"Name des Geräts"
	02	Name 2	VisString	RO	NO	"350Z"	
	03	Name 3	VisString	RO	NO	"A "	

8.5.4.5 Hardware Version

	Tabelle 32 CAN: Hardware Version								
Index	Subindex	Name	Тур	Attr.	Мар	Default	Bedeutung		
0x1009	00	Hardware Ver- sion	VisString	RO	NO	"A2"	"Version der Rech- nerplatine"		

8.5.4.6 Software Version

 Tabelle 33
 CAN: Software Version

Index	Subindex	Name	Тур	Attr.	Мар	Default	Bedeutung
0x100A	00	Software Ver- sion	VisString	RO	NO	"1.14"	"Version der Rech- nerfirmware"

8.5.4.7 Save Parameter

 Tabelle 34
 CAN: Save Parameter

Index	Sub Index	Name	Тур	Attr.	Мар	Default	Bedeutung
0x1010	00	Save Parame- ter	Unsigned 8	RO	No	0x01	Anzahl der Sub Indizes
	01	Save All	Unsigned 32	RW	No	0x00000001	Save All ist mög- lich

Durch Schreiben der Signatur "save" im ASCII-Code (hex-Code: 0x65766173) oder "evas" (hex-Code: 0x73617665) auf Sub-Index 1 werden die aktuellen Parameter nicht flüchtig gespeichert. Ein erfolgreicher Speichervorgang wird durch das TxSDO (1. Byte = 0x60) nach ca. 400 ms bestätigt. Während des Speichervorganges können keine CAN-Telegramme gesendet und empfangen werden.

8.5.4.8 Restore Default Parameter

Tabelle 35 CAN: Restore Default Parameter

Index	Sub Index	Name	Тур	Attr.	Мар	Default	Bedeutung
0x1011	00	Restore Para- meter	Unsigned 8	RO	No	0x04	Anzahl der Sub Indizees
	01	Restore All	Unsigned 32	RW	No	0x00000001	Restore All ist mög- lich
	02	Restore Com- munication	Unsigned 32	RW	No	0x00000001	Restore Communi- cation ist möglich
	04	Restore Manufacture	Unsigned 32	RW	No	0x00000001	Restore Manufac- ture ist möglich

Durch Schreiben der Signatur "load" im ASCII-Code (hex-Code: 0x64616F6C) oder "daol" (hex-Code: 0x6C6F6164) auf Sub-Index 1,2 bzw. 4 werden die entsprechenden Defaultparameter geladen. Es sollte ein Reset durchgeführt werden.

8.5.4.9 Producer Heartbeat Time

 Tabelle 36
 CAN: Producer Heartbeat Time

Index	Sub Index	Name	Тур	Attr.	Мар	Default	Bedeutung
0x1017	00	Producer Heartbeat Time	Unsigned 16	RW	No	1000	Heartbeat-Zeit in ms (ca.)

Falls für die Zeit 0 eingetragen wird, ist diese Funktion abgeschaltet.

8.5.4.10 Identity Object

Tabelle 37 CAN: Identity Object

Index	Sub Index	Name	Тур	Attr.	Мар	Default	Bedeutung
0x1018	00	Identity Object	Unsigned 8	RO	No	0x03	Anzahl der Sub Indizees
	01	Vendor ID	Unsigned 32	RO	No	0x00000202	Von CiA festgelegte Herstellernummer
	02	Product Code	Unsigned 32	RO	No	0x00073350	Name des Geräte
	03	Revision	Unsigned 32	RO	No	0x0000001	Revision des Geräts
	04	Serial Number	Unsigned 32	RO	No		7-stellige Geräte-Seri- ennummer

8.5.4.11 Receive PDO Parameter

 Tabelle 38
 CAN: Receive PDO Parameter

Index	Subindex	Name	Тур	Attr.	Мар	Default	Bedeutung
0x1400	00	RxPDO_1 Parameter	Unsigned 8	RO	NO	2	Anzahl Subindizees
	01	COB-ID	Unsigned 32	RW	NO	0x40000200 + Node ID	RPDO gültig, ID = 0x200 + Node ID
	02	Transmission Type	Unsigned 8	RO	NO	255	Asynchron, ereig- nisgesteuert

8.5.4.12 Mapping RPDO_1

 Tabelle 39
 CAN: Mapping RPDO_1

Index	Subindex	Name	Тур	Attr.	Мар	Default	Bedeutung
0x1600	00	Number of mapped objects	Unsigned 8	RO	NO	2	Anzahl Subindizees
	01	1st mapped object	Unsigned 32	RO	NO	0x20000110	Mapped auf Index 0x2000,01 mit 16 Bit Länge (Frequenz 1)
	02	2nd map- ped object	Unsigned 32	RO	NO	0x20000210	Mapped auf Index 0x2000,02 mit 16 Bit Länge (Frequenz 2)

8.5.4.13 Transmit PDO_1 Parameter

Index	Sub Index	Name	Тур	Attr.	Мар	Default	Bedeutung
0x1800	00	TxPDO_1 Parameter	Unsigned 8	RO	No	0x04	Anzahl der Sub Indi- zees
	01	COB ID	Unsigned 32	RW	No	0x40000180 + Node-ID	PDO_1 gültig, ID = 0x180 + Node-ID
	02	Transmission Type	Unsigned 8	RW	No	255	Asynchron ereignisge- steuert
	03	Inhibit Time	Unsigned 16	RW	No	100	kürzestete Zeit zwi- schen den Aussendun- gen in Vielfachen von 100 µs
	05	Event Time	Unsigned 16	RW	No	10	Zykluszeit in ms

Tabelle 40 CAN: Transmit PDO_1 Parameter

8.5.4.14 Transmit PDO_2 Parameter

Tabelle 41 CAN: Transmit PDO_2 Parameter

Index	Sub Index	Name	Тур	Attr.	Мар	Default	Bedeutung
0x1801	00	TxPDO_2 Parameter	Unsigned 8	RO	No	0x04	Anzahl der Sub Indizees
	01	COB ID	Unsigned 32	RW	No	0x40000280 + Node-ID	PDO_2 gültig, ID = 0x280 + Node-ID
	02	Transmission Type	Unsigned 8	RW	No	255	Asynchron ereignisge- steuert
	03	Inhibit Time	Unsigned 16	RW	No	100	kürzestete Zeit zwi- schen den Aussendun- gen in Vielfachen von 100 µs
	05	Event Time	Unsigned 16	RW	No	10	Zykluszeit in ms

8.5.4.15 Mapping TxPDO_1

Tabelle 42 CAN: Mapping TxPDO_1

Index	Sub Index	Name	Тур	Attr.	Мар	Default	Bedeutung
0x1A00	00	Number of map- ped objects	Unsigned 8	RO	No	0x03	Anzahl der Sub Indi- zees
	01	1st mapped object	Unsigned 32	RO	No	0x60000108	mapped auf Index 0x6000,01 mit 8 Bit Länge (Status)
	02	2nd mapped object	Unsigned 32	RO	No	0x64010510	mapped auf Index 0x6401,05 mit 16 Bit Länge (X1)
	03	3rd mapped object	Unsigned 32	RO	No	0x64010610	mapped auf Index 0x6401,06 mit 16 Bit Länge (X2)

8.5.4.16 Mapping TxPDO_2

Index	Sub Index	Name	Тур	Attr.	Мар	Default	Bedeutung
0x1A01	00	number of map- ped objects	Unsigned 8	RO	No	0x04	Anzahl der Sub Indi- zees
	01	1st mapped object	Unsigned 32	RO	No	0x64010110	mapped auf Index 0x6401,01 mit 16 Bit Länge (Us1)
	02	2nd mapped object	Unsigned 32	RO	No	0x64010210	mapped auf Index 0x6401,02 mit 16 Bit Länge (Ud1)
	03	3rd mapped object	Unsigned 32	RO	No	0x64010310	mapped auf Index 0x6401,03 mit 16 Bit Länge (Us2)
	04	4th mapped object	Unsigned 32	RO	No	0x64010410	mapped auf Index 0x6401,04 mit 16 Bit Länge (Ud2)

Tabelle 43 CAN: Mapping TxPDO_2

8.5.4.17 Manufacture Parameter - Antennenparameter

Index	Sub Index	Name	Тур	Attr.	Мар	Default	Bedeutung
0x2000	00	number of parameter	Unsigned 8	RO	No	0x08	Anzahl der Sub Indizees
	01	Frequency 1	Unsigned 16	RW	Yes	10000	Frequenz Kanal 1 in Hz
02	Frequency 2	Unsigned 16	RW	Yes	10000	Frequenz Kanal 2 in Hz	
	03	Threshold CD 1 LED	Unsigned 16	RW	No	1000	Schwellwert für Us1 nach dessen Überschreitung LED CD1 leuchtet
	04	Threshold CD 2 LED	Unsigned 16	RW	No	1000	Schwellwert für Us2 nach dessen Überschreitung LED CD2 leuchtet
05	Height of Ant 1	Unsigned 8	RW	No	60	Abstand Leitdraht - Gehäuse- unterkante Antenne 1 in mm	
	06	Height of Ant 2	Unsigned 8	RW	No	60	Abstand Leitdraht - Gehäuse- unterkante Antenne 2 in mm
07	Internal Height of Ant1	Unsigned 8	RW	No	35	Abstand Spulensystem - Gehäuseunterkante Antenne 1 in mm	
	08	Internal Height of Ant2	Unsigned 8	RW	No	35	Abstand Spulensystem - Gehäuseunterkante Antenne 2 in mm

 Tabelle 44
 CAN: Manufacture Parameter - Antennenparameter

Nach Umschalten der Frequenzen wird für 40 ms das entsprechende Detect-Bit (Bit 6 bzw. Bit 7) im Status gelöscht (siehe Tabelle 15 auf Seite 33).

8.5.4.18 Manufacture Parameter - Antennenkalibrierung

Index	Sub Index	Name	Тур	Attr.	Мар	Default	Bedeutung
0x2001	00	number of para- meter	Unsigned 8	RO	No	0x02	Anzahl der Sub Indizees
0	01	Start Ant-1 cali- bration	Unsigned 32	W	No	./.	*)
		Stop Ant-1 cali- bration	Unsigned 32	R	No	0x0000 0001	*)
	02	Start Ant-2 cali- bration	Unsigned 32	W	No	./.	*)
		Stop Ant-2 cali- bration	Unsigned 32	R	No	0x0000 0001	*)
*) Durch	Schroibon d	or Signatur, cali"	im ASCII Code	hoy Co	do: Ov	6060616	2) odor ilac" (box Codo:

Tabelle 45	CAN: Manu	facture	Parameter -	- Antennen	kalibrieruna
	0,			,	

*) Durch Schreiben der Signatur "cali" im ASCII-Code (hex-Code: 0x696C6163) oder "ilac" (hex-Code: 0x63616C69) auf Sub-Index 1 bzw. 2 werden die entsprechenden Kalibrierungen gestartet und durch Lesen von Sub-Index 1 bzw. 2 beendet. Danach sollten die Parameter gespeichert und ein Reset durchgeführt werden.

Während der Kalibrierung ist das entsprechende Bit im Systemstatus (TxPDO 1) gesetzt. Für die jeweiligen Spannungen Us1, Ud1 bzw. Us2, Ud2 im TxPDO 2 werden die Maximalwerte der Kalibrierung eingesetzt, wie sie auch im oben beschriebenen Kalibrierungsmenü ausgegeben werden. Es wird dabei der Mittelwert aus UdI und Udr gebildet.

i

Die Kalibrierung sollte bei 10 kHz Drahtfrequenz durchgeführt werden, da auch die Frequenzkompensation auf diese Frequenz bezogen wird.

	8.5.4.19 Manufacture Parameter - Nodeparameter	
Tabelle 46	CAN: Manufacture Parameter - Nodeparameter	

.

.. .

_

.

~ • •

Index	Sub Inde	x Na	me	Тур	Attr.	Мар	Default	Bedeutung
0x2002	00	Nu me	mber of Para- ter	Unsigned 8	RO	No	0x02	Anzahl der Sub Indizees
	01	No	de Baud-rate	Unsigned 8	RW	No	0x02	125 Kbaud *) siehe Tabelle 47
	02	No	de ID	Unsigned 8	RW	No	0x01	Nodeadresse 1
	03	No	de Config	Unsigned 8	RW	No	0x01	Start im Zustand "operatio- nal" Highbyte first **) siehe Tabelle 48
*)	Tabe	lle 47	CAN: Codieru	ing der Node	-Baudrai	te		
			Eingegeben	er/ausgeles	ener We	ert l	Baudrate	/ kBaud
			7			4	20	
			6			:	50	
			5				Nicht geni	utzt
			4 (Default)				125	
			3				250	
			2				500	
			1				300	
* * \			0		0 (1)		1000	
)	Tabe	lle 48	CAN: Codieru	ing des Node	Config I	Bytes		
			Wert	Bedeu	tung			
			xxxx.xxx0	Start ir	n Zustar	id "pre	-operatior	nal"
			xxxx.xxx1	Start ir	n Zustar	id "ope	erational"	
			xxxx.xx0x	Highby	rte first			
			xxxx.xx1x	Lowby	te first			

8.5.4.20 8 Bit Digital Input (übertragen in TxPDO 1)

 Tabelle 49
 CAN: 8 Bit Digital Input (übertragen in TxPDO 1)

Index	Sub Index	Name	Тур	Attr.	Мар	Default	Bedeutung
0x6000	00	number of 8 bit inputs	Unsigned 8	RO	No	0x01	Anzahl der 8 Bit Eingänge
	01	8 bit digital input	Unsigned 8	RO	Yes	./.	Systemstatus / TxPDO_1

	Tabelle 50	CAN: 16 Bit Analog Inputs (übertr. in TxPDO 1 und TxPDO 2)					
Index	Sub Index	Name	Тур	Attr.	Мар	Default	Bedeutung
0x6401	00	number of 16 bit analog inputs	Unsigned 8	RO	No	0x06	Anzahl der analogen 16 Bit Eingänge
	01	SUM_1	Unsigned 16	RO	Yes	./.	Us1 / TxPDO_2
	02	DIF_1	Signed 16	RO	Yes	./.	Ud1/TxPDO_2
	03	SUM_2	Unsigned 16	RO	Yes	./.	Us2 / TxPDO_2
	04	DIF_2	Signed 16	RO	Yes	./.	Ud2 / TxPDO_2
	05	X1	Signed 16	RO	Yes	./.	X1 / TxPDO_1
	06	X2	Signed 16	RO	Yes	./.	X2 / TxPDO_1

8.5.4.21 16 Bit Analog Inputs (übertragen in TxPDO 1 und TxPDO 2)

Profibus-Interface (HG G-73351)

Die Node-ID muss über den in Abschnitt 7.3 auf Seite 21 beschriebenen seriellen Monitor gewählt werden. Mit Hilfe des GSD-Files 73351A0.GSD (siehe Abschnitt 12.4 auf Seite 54 im Anhang) können zwei verschiedene Konfigurationen projektiert werden, s. u. Die Bytereihenfolge innerhalb der 16-Bit Wörter kann über das Profibus-Menü mit Punkt 🕒 verändert werden (siehe Abschnitt 7.3.4 auf Seite 27).

1. Reines Lesen mit 5 Input-Bytes gemäß folgender Tabelle:

Tabelle 51 Aufbau der 5 Profibus Input-Bytes

Wert	Format	Wertebereich	Bemerkung
Status	unsigned 8	00xff	Statusbits gemäß Tabelle 52 unten
X1	signed 16	-255+255	-255 [mm]+255 [mm]
X2	signed 16	-255+255	-255 [mm]+255 [mm]

Die Bedeutung der Statusbits ist folgendermaßen festgelegt:

Tabelle 52 Profibus: Bedeutung des Statusbits

Bitnummer	Wertigkeit	Bedeutung
7	0x80	Us1 hat die eingestellte Schwelle für Kanal 1 über- schritten
6	0x40	Us2 hat die eingestellte Schwelle für Kanal 2 über- schritten
5	0x20	Nicht benutzt
4	0x10	Kalibrierung ist aktiv
3	0x08	DC-Überwachung Ud1 ist OK
2	0x04	DC-Überwachung Ud2 ist OK
1	0x02	Nicht benutzt
0	0x01	Die Prüfsumme der EEProm - Parameter stimmt nicht.

2. Zusätzlich zu Punkt 1 Drahtfrequenzen für beide Kanäle einstellen:

Tabelle 53 Profibus: Aufbau der 4 Profibus Output-Bytes

Wert	Format	Wertebereich	Bemerkung
F1	Unsigned 16	100028000	Drahtfrequenz Kanal 1 [kHz]
F2	Unsigned 16	100028000	Drahtfrequenz Kanal 2 [kHz]

Falls Werte außerhalb des vorgesehenen Wertebereich übertragen werden, so werden diese ignoriert. Frequenzänderungen werden mit der in den Technischen Daten genannten Zeit für die Frequenzumschaltung durchgeführt.

Fehlersuche

Im Folgenden finden Sie eine tabellarische Auflistung möglicher Fehler. Zu jedem Fehler wird eine Beschreibung auftretender Symptome gegeben. In der dritten Spalte finden Sie eine Anleitung, wie Sie den Fehler eingrenzen und idealerweise auch beheben können.

Sollten Sie nicht in der Lage sein, einen Fehler zu beheben, nutzen Sie bitte die Tabelle, um ihn möglichst genau einzugrenzen (Art der Fehlfunktion, Zeitpunkt des Auftretens), bevor Sie sich an uns wenden.

Fehler	Mögliche Ursache(n)	Mögliche Diagnose/Behebung
Keine Systemfunktion.	Zu geringe Spannungsversorgung.	Leuchtet die PWR LED?
Keine Kontaktaufnahme möglich. (CAN)	 CAN_H mit CAN_L vertauscht. Signalmasse nicht angeschlossen bei zu hoher Potentialdifferenz zwischen Auswerter und Daten- empfänger. Falsche Übertragungsparameter eingestellt. Kein Abschlusswiderstand. 	 Überprüfen Sie die entsprechen- den Verbindungen. Verbinden Sie die Signalmassen. Wählen Sie die korrekten Parame- ter über das Monitorprogramm (Abschnitt 7.3 auf Seite 21).
Keine Kontaktaufnahme möglich. (Profibus)	 Bus A mit Bus B vertauscht. Signalmasse nicht angeschlossen bei zu hoher Potentialdifferenz zwischen Auswerter und Daten- empfänger. Falsche Übertragungsparameter eingestellt. Kein Abschlusswiderstand. 	 Überprüfen Sie die entsprechen- den Verbindungen. Verbinden Sie die Signalmassen. Wählen Sie die korrekten Parame- ter über das Monitorprogramm (Abschnitt 7.3 auf Seite 21).
Keine Abstandswerte trotz vorhandenem Leit- draht.	 Falsche Frequenz gewählt. Schwellen zu hoch eingestellt. 	Stellen Sie über das Monitorpro- gramm (Abschnitt 7.3 auf Seite 21) die korrekte Frequenz und niedrigere Schwellen ein.
Ungenaue Abstandsaus- gabe.	 Keine Ortskalibrierung. Lesehöhen falsch. 	Führen Sie über das Monitorpro- gramm (Abschnitt 7.3 auf Seite 21) eine Ortskalibrierung durch bzw. korri- gieren Sie die Lesehöhen.

 Tabelle 54
 Fehlersuche

Technische Daten

Tabelle 55	Technische Daten	HG G-7335xZB
------------	------------------	--------------

11

Technische Daten HG G-7335	ōxZB	
Baugröße	160 mm x 90 m	nm x 50 mm
Gewicht	400 g	
Schutzklasse	IP 64	
Relative Luftfeuchte bei 25° C	95% (ohne Bet	auung)
Temperaturbereich	0 ^o C bis +50 ^o C	
Lagertemperaturbereich	-20 ⁰ C bis +70 ⁰	С
Betriebsspannung	+24 V ±25%	
Stromaufnahme	100 mA	
Eingangs-Empfindlichkeit	1 Vss für 3/4 Vo	Ilaussteuerung bei Nennfrequenz
Max. Eingangsspannung	5 Vss (Summe	aller Frequenzen)
Ausgabe	CAN-Bus HG G-73350 Profibus HG G-73351	 nicht potenzialgetrennt CANopen®, Device Profil DS 401 Node-ID und Übertragungs- rate über serielle Schnittstelle bzw. SDOs konfigurierbar. Ein Abschlusswiderstand ist nicht integriert. nicht potenzialgetrennt DP-V0 nach IEC61158/ EN50170 Node-ID über serielle Schnitt- stelle konfigurierbar. Ein Abschlusswiderstand ist nicht integriert.
	Monitor seriell	38400 Baud, 8 Datenbits, Parität gerade, 1 Stopbit, nicht potenzial- getrennt
Updaterate	10 ms	
Frequenzbereich	3 bis 25 kHz (s. Querabweichur 28 kHz (s. Bild 2	Bild 14 auf Seite 51) ng X ist kompensiert von 1 kHz bis 15 auf Seite 51)
Frequenzumschaltung	ca. 40 ms	
Bandfiltergüte	>= 20	

Anhang

12.1 Blockschaltbilder

Bild 13 Blockschaltbild HG G-73351 (Profibus)

12.2 Diagramme

Bild 14 Frequenzgang Auswerter HG G-73350 + Antenne HG G-19200Z(Y)C

Bild 17 Bandfiltercharakteristik bei 10 kHz (Q=22)

Bild 19 Bandfiltercharakteristik bei 20 kHz (Q=22)

12.3 Electronic Data Sheet (EDS-File, HG G-73350)

Das sogenannte EDS-File mit der CAN-Bus Konfiguration können Sie bei Bedarf über den Download-Bereich unserer Homepage in der jeweils aktuellsten Version herunterladen.

http://www.goetting.de/komponenten/7335x

12.4 GSD File (HG G-73351)

Die aktuellste Version des GSD-Files für die Profibus Konfiguration können Sie bei Bedarf über den Download-Bereich unserer Homepage in der jeweils aktuellsten Version herunterladen. Zusätzlich ist dort auch ein Foto des Geräts als Bitmap Datei verfügbar.

http://www.goetting.de/komponenten/7335x

Abbildungsverzeichnis

Bild 1	Gehäuseabmessungen Auswerter HG G-73350/HG G-73351	.14
Bild 2	Lage der LEDs	.19
Bild 3	Anschlussbeispiel: Verbindung mit der seriellen Schnittstelle eines PCs	.21
Bild 4	Screenshot: Hauptmenü des Monitorprogramms (HG G-73350 mit CAN-Bus)	.22
Bild 5	Screenshot: Hauptmenü des Monitorprogramms (HG G-73351 mit Profibus)	.22
Bild 6	Screenshot: Antennenmenü	.24
Bild 7	Screenshot: Antennenkalibrierungsmenü	.25
Bild 8	Screenshot: CAN-Menü (HG G-73350)	.25
Bild 9	Screenshot: Profibus-Menü (HG G-73351)	.27
Bild 10	Screenshot: Firmwareupdate	.28
Bild 11	Screenshot: Firmwareupload	.28
Bild 12	Blockschaltbild HG G-73350 (CAN-Bus)	.50
Bild 13	Blockschaltbild HG G-73351 (Profibus)	.50
Bild 14	Frequenzgang Auswerter HG G-73350 + Antenne HG G-19200Z(Y)C	.51
Bild 15	Frequenzgang Ausgangsgröße (kompensiert)	.51
Bild 16	Bandfiltercharakteristik bei 5 kHz (Q=20)	.52
Bild 17	Bandfiltercharakteristik bei 10 kHz (Q=22)	.52
Bild 18	Bandfiltercharakteristik bei 15 kHz (Q=21)	.53
Bild 19	Bandfiltercharakteristik bei 20 kHz (Q=22)	.53
Bild 20	Bandfiltercharakteristik bei 25 kHz (Q=28)	.53

Tabellenverzeichnis

Tabelle 1	Gefahrenklassen nach ANSI Z535.6-2006	7
Tabelle 2	Variantenübersicht	12
Tabelle 3	Anschlussbelegung Antennenbuchsen Stecker ANT1 und ANT2	14
Tabelle 4	Anschlussbelegung CAN-Bus Stecker BUS1 und BUS2	15
Tabelle 5	Anschlussbelegung Profibus Stecker BUS1 und BUS2	15
Tabelle 6	Anschlussbelegung Spannungsversorgung und serielles Interface, Stec- ker PWR / RS232	16
Tabelle 7	Übertragungsparameter der seriellen RS232 Schnittstelle	21
Tabelle 8	Bedeutung der möglichen Werte der Statusausgabe	23
Tabelle 9	Parameter PDO-Betriebsart	30
Tabelle 10	PDO Betriebsarten	31
Tabelle 11	Begriffserklärungen CAN/CANopen®	31
Tabelle 12	Bit und Byte Reihenfolgen	31
Tabelle 13	CANopen® Betriebszustand	32
Tabelle 14	CAN: Zahlendarstellung für PDO_1	32
Tabelle 15	CAN: Bedeutung des Statusbits	33
Tabelle 16	CAN: Berechnung negativer Abstandswerte (Beispiel: Maximum)	33
Tabelle 17	CAN: Berechnung positiver Abstandswerte (Beispiel: Maximum)	33
Tabelle 18	CAN: Abstandsangabe bei Verlust des Leitdrahts	34
Tabelle 19	CAN: Beispielwerte für die Abstandsausgabe	34
Tabelle 20	CAN: Zahlendarstellung für PDO_2	34
Tabelle 21	Beispiel für die Umrechnung in PDO_2	34
Tabelle 22	CAN: Zahlendarstellung für RPDO	35
Tabelle 23	CAN: Heartbeat Gerätezustände	35
Tabelle 24	CAN: SDO Fehlercodes	36
Tabelle 25	CAN: Übersicht über das Objektverz., kommunikationsspezifische Einträ- ge im Bereich 0x1000 bis 0x1FFF	36
Tabelle 26	CAN: Übersicht über das Objektverz., herstellerspezifische Einträge ab 0x2000	38
Tabelle 27	CAN: Übersicht über das Objektverz., standardisierter Geräteprofilber. ab 0x6000	39
Tabelle 28	CAN: Device Type	39
Tabelle 29	CAN: Error Register	39
Tabelle 30	CAN: COB-ID SYNC message	39
Tabelle 31	CAN: Device Name	39
Tabelle 32	CAN: Hardware Version	40
Tabelle 33	CAN: Software Version	40
Tabelle 34	CAN: Save Parameter	40
Tabelle 35	CAN: Restore Default Parameter	40
Tabelle 36	CAN: Producer Heartbeat Time	41
Tabelle 37	CAN: Identity Object	41

Tabelle 38	CAN: Receive PDO Parameter	41
Tabelle 39	CAN: Mapping RPDO_1	41
Tabelle 40	CAN: Transmit PDO_1 Parameter	42
Tabelle 41	CAN: Transmit PDO_2 Parameter	42
Tabelle 42	CAN: Mapping TxPDO_1	42
Tabelle 43	CAN: Mapping TxPDO_2	43
Tabelle 44	CAN: Manufacture Parameter - Antennenparameter	43
Tabelle 45	CAN: Manufacture Parameter - Antennenkalibrierung	44
Tabelle 47	CAN: Codierung der Node-Baudrate	45
Tabelle 48	CAN: Codierung des Node Config Bytes	45
Tabelle 46	CAN: Manufacture Parameter - Nodeparameter	45
Tabelle 49	CAN: 8 Bit Digital Input (übertragen in TxPDO 1)	45
Tabelle 50	CAN: 16 Bit Analog Inputs (übertr. in TxPDO 1 und TxPDO 2)	46
Tabelle 51	Aufbau der 5 Profibus Input-Bytes	47
Tabelle 52	Profibus: Bedeutung des Statusbits	47
Tabelle 53	Profibus: Aufbau der 4 Profibus Output-Bytes	47
Tabelle 54	Fehlersuche	48
Tabelle 55	Technische Daten HG G-7335xZB	49

Stichwortverzeichnis

А

Anschluss an einen PC Anschlussbeispiel ANT1	21 21 14
ANT2	
Antennenbuchsen	14
Antennenmenü	24

В

Bandfiltercharakteristik	52
Bestimmungsgemäße Verwendung	8
Betriebsbedingungen	
Blockschaltbilder	
BUS1	
BUS2	

С

CAN	
Begriffsbestimmungen	30
Begriffserklärungen	31
CANopen [®]	32
EDS	54
Electronic Data Sheet (EDS)	54
Empfangsobjekte	35
Heartbeat	35
Interface	30
Objektverzeichnis	36
PDO Betriebsarten	31
Prozessdaten Objekte (PDOs)	32
Sendeobjekte	32
Servicedaten Objekte (SDOs)	36
CAN-Interface	30
CAN-Menü	25
CANopen®	32
Object Dictionary	39

Е

Eingangssignal	.18
EU-Konformitätserklärung	6

F

Fachkraft	9
Fehlersuche	48
Firmennamen	60
Firmwareupdate	28
Frequenzgang	51

G

Gehäuseabmessungen	14
Gerätebeschreibung	
Gültigkeit	5
mitgeltende Unterlagen	5
Zielgruppe	5

Gültigkeit der Gerätebeschreibung
н
Haftungsausschluss60
Hardware18
Hauptmenü
1
Inbetriebnahme17
K
Kabal 12
Kabei
Konformitätserklärung
1
L LEDa 10
LLDS
М
Markenzeichen
Mitgeltende Unterlagen
Antennenmenü 24
CAN-Menü
Firmwareupdate
Hauptmenü22
Kalibrierungsmenü25
Profibus-Menü27
Statusausgabe
Montage 14
N
Nicht bestimmungsgemäße Verwendung
0
Ortskalibrierung17
Р
Pflichten des Betreibers 11
Profibus
GSD54
Input-Bytes47
Interface
UUTpuT-ByTes4/
Profibus-Interface 47
Profibus-Menü
PWR16
0
Qualification der Deputzer
Qualifikation der Benutzer

R

RS232	16
Schnittstellenparameter	21

S

Schnittstellenparameter	
serielle Schnittstelle	
Sicherheitshinweise	8
allgemeine	
bestimmungsgemäße Verwendung	8
nicht bestimmungsgemäße Verwendung	8
Pflichten des Betreibers	
Signalverarbeitung	
Software	21
Statusausgabe	23
Stecker	
ANT1	14
ANT2	14
CAN	
BUS1	15
BUS2	15
Profibus	
BUS1	15
BUS2	15

PWR	
RS232	
Steckverbinder	
Symbole	7
Systemkomponenten	

Т

Technische Daten	49
Terminalprogramm	21

U

Überwachung	18
Umgebungsparameter	27
Urheberrechte	60

۷

Variantenübersicht	12
Voreinstellungen	18

Ζ

Zielgruppe	5
Zubehör	
Kabel	

Hinweise

16.1 Urheberrechte

Dieses Werk ist urheberrechtlich geschützt. Alle dadurch begründeten Rechte bleiben vorbehalten. Zuwiderhandlungen unterliegen den Strafbestimmungen des Urheberrechts.

16.2 Haftungsausschluss

Die angegebenen Daten verstehen sich als Produktbeschreibungen und sind nicht als zugesicherte Eigenschaften aufzufassen. Es handelt sich um Richtwerte. Die angegebenen Produkteigenschaften gelten nur bei bestimmungsgemäßem Gebrauch.

Diese Anleitung ist nach bestem Wissen erstellt worden. Der Einbau und Betrieb der Geräte erfolgt auf eigene Gefahr. Eine Haftung für Mangelfolgeschäden ist ausgeschlossen. Änderungen, die dem technischen Fortschritt dienen, bleiben vorbehalten. Ebenso behalten wir uns das Recht vor, inhaltliche Änderungen der Anleitung vorzunehmen, ohne Dritten Kenntnis geben zu müssen.

16.3 Markenzeichen und Firmennamen

Soweit nicht anders angegeben, sind die genannten Produktnamen und Logos gesetzlich geschützte Marken der Götting KG. Alle anderen Produkt- oder Firmennamen sind gegebenenfalls Warenzeichen oder eingetragene Warenzeichen bzw. Marken der jeweiligen Firmen.

Führung durch Innovation

Götting KG Celler Str. 5 | D-31275 Lehrte Tel. +49 (0) 5136 / 8096 -0 Fax +49(0) 5136 / 8096 -80 info@goetting.de | www.goetting.de

www.goetting.de