Transponder-Antenne HG G-98760-C

1-dimensional, 128 kHz, CAN oder Profibus®

Führung durch Innovation

•	Transponder-Antenne für schienen-	•	Max. Überfahrgeschw. 3 m/s
	geführte Krane (FTF)	•	Spannungsversorgung 24 V ±10%
•	Vergossene Elektronik	•	Bus-Schnittstelle: CAN oder Profi-
•	Indoor & Outdoor, IP 67		bus®, s. Variantentabelle
•	Frequenzbereich 128 kHz	•	PosiPuls bei Querung der Antennen-
•	Leseabstand abhängig vom Trans-		mitte in Fahrtrichtung
	ponder 30 bis max. 200 mm	•	Serielle Schnittstelle dient als Ser-
•	Aktiver Bereich für die Positionie-		vice-Schnittstelle zur Konfiguration
	rung 280 x 110 mm		oder Daten-Schnittstelle
		•	Programmierung von Transpondern

© 2023 Götting KG, Irrtümer und Änderungen vorbehalten.

Die Götting KG in D-31275 Lehrte besitzt ein zertifiziertes Qualitätssicherungssystem gemäß ISO 9001.

Gerätebeschreibung HG G-98760-C | Deutsch, Revision 05 | Stand: 25.09.2023

Inhalt

1 1.1 1.2	Über dieses Dokument Warnhinweise Symbole	5 6
2 2.1 2.2 2.3	Einleitung Varianten der Transponder-Antenne Funktionsbeschreibung Positionierung	7 7
3 3.1 3.2	Lieferumfang Notwendiges Zubehör Optionales Zubehör	9
4	Montage	11
5	Inbetriebnahme	12
6 6.1 6.1.1 6.1.2	Komponenten und Bedienung HG G 98760ZC/WC (mit CAN-Bus) Zeichnung Belegung der 12-poligen Buchse	16 16 16 17
6.2 6.2.1	HG G 98760YC/XC (mit Profibus [®]) Zeichnung	
6.2.2	Pinbelegungen	
6.3	Einschaltverhalten	20
6.4	Schnittstellen	
6.4.1	Seriell (RS422 bzw. RS232)	
0.4.1.1 6 <i>4</i> 1 0	Liste der Systemkommandes	20 22
6/13	Systemmonitor	22 23
642	Positionierimpuls	20 23
6.4.3	CAN.	
6.4.3.1	Beschreibung	
6.4.3.2	CAN Message Object 1 (Sende-Objekt; kompatibel zu früheren Firm- ware-Versionen)	
6.4.3.3	CAN Message Object 2 (A-Identifier; Sende-Objekt)	
6.4.3.4	CAN Message Object 3 (B Identifier; Sende-Objekt)	
6.4.3.5	CAN Message Object 4 (D Identifier; Sende-Objekt)	
6.4.3.6	CAN Message Object 5 (Referenztransponder; Empfangs-Objekt)	25
6.4.4	Profibus [®]	25
6.4.4.1	Profibus® Input Bytes	25
6.4.4.2	Output Byte	25
6.5	Softwareupdate	
6.6	Zubenor: Optionales serieil/parallel Interface HG G-06150-A	
7	Software	27
7.1	Terminalprogramm	
7.2	Systemmonitor	
7.2.1 7.0.1.1	Monitorprogramm starten	
/.∠.⊥.⊥ 7 0 1 0	FIUZEUUI MUTIILUI UTIIY Drozedur 2061D/transparent	28∠על סר
7.2.⊥.Z	n rozedur oborny iransparent Monitorprogramm bedienen	20 20
,.∠.∠ 7	Grundmenii	
7.2.2.2	(T)ime & Code	
7.2.2.3	(F)requency & Antenna Tuning	

7.2.2.4	(S)erial Output	
7.2.2.5	C(A)N-Parameters	
7.2.2.6	P(r)ofibus-Parameters	
7.2.2.7	(W)rite Transponder	
7.2.2.8	CS(V)	
7.2.2.9	(U)pdate Firmware	
7.3	Softwareupdate (Antennensoftware)	
7.3.1	Einrichten des Updateprogramms	
7.3.2	Durchführen eines Softwareupdates	
8	Wartung	40
9	Fehlersuche	41
10	Technische Daten	42
10.1	Antenne	
10.2	EMV	43
11	Anhang	
11.1	Physikalische Grundlagen	
11.1.1	Feldverlauf des Energiefeldes	
11.1.2	Feldverlauf des Transponderrückwirkungssignals	44
11.1.3	Induzierte Spannungen in Summen- und Differenzantenne	45
11.2	Prozedur 3964R	
11.2.1	Datenrichtung Antenne -> SPS	
11.2.2	Datenrichtung SPS -> Antenne	
1131	Piozeduli "ulalisparenic Datenrichtung Antenne -> SPS	
11.3.1	Datenrichtung SPS -> Antenne	
11.4	GSD File (Antenne HG 98760YC/XC mit Profibus®)	47
12	Abbildungsverzeichnis	48
13	Tabellenverzeichnis	49
14	Stichwortverzeichnis	50
15	Hinweise	
15.1	Urheberrechte	
15.2	Haftungsausschluss	
15.3	Markenzeichen und Firmennamen	

Gerätebeschreibung HG G-98760-C | Deutsch, Revision 05 | Stand: 25.09.2023

Über dieses Dokument

Damit Sie mit dieser Gerätebeschreibung schnell und sicher mit Ihrem Produkt arbeiten können, werden einheitliche Warnhinweise, Symbole, Begriffe und Abkürzungen verwendet. Zum besseren Verständnis sind diese in den folgenden Kapiteln erklärt.

1.1 Warnhinweise

In dieser Gerätebeschreibung stehen Warnhinweise vor einer Handlungsabfolge, bei der die Gefahr von Personen- oder Sachschäden besteht. Die beschriebenen Maßnahmen zur Gefahrenabwehr müssen eingehalten werden.

Warnhinweise sind wie folgt aufgebaut:

SIGNALWORT

Art oder Quelle der Gefahr

Folgen

- Gefahrenabwehr
- Das Warnzeichen (Warndreieck) macht auf Lebens- oder Verletzungsgefahr aufmerksam.
- Das Signalwort gibt die Schwere der Gefahr an.

1

- Der Absatz Art oder Quelle der Gefahr benennt die Art oder Quelle der Gefahr.
- Der Absatz Folgen beschreibt die Folgen bei Nichtbeachtung des Warnhinweises.
- Die Absätze **Gefahrenabwehr** geben an, wie man die Gefahr umgehen kann.

Die Signalwörter haben folgende Bedeutung:

Tabelle 1 Gefahrenklassen nach ANSI Z535.6-2006

Warnzeichen, Signalwort	Bedeutung
GEFAHR	GEFAHR kennzeichnet eine gefährliche Situation, in der Tod oder schwere Verletzungen eintreten wer- den, wenn sie nicht vermieden wird.
	WARNUNG kennzeichnet eine gefährliche Situation, in der Tod oder schwere Verletzungen eintreten kön- nen, wenn sie nicht vermieden wird.
	VORSICHT kennzeichnet eine gefährliche Situation, in der leichte bis mittelschwere Verletzungen eintre- ten können, wenn sie nicht vermieden wird.
ACHTUNG	ACHTUNG kennzeichnet Sachschäden: Das Produkt oder die Umgebung können beschädigt werden.

1.2 Symbole

In dieser Gerätebeschreibung werden folgenden Symbole und Auszeichnungen verwendet:

Wenn diese Information nicht beachtet wird, kann das Produkt nicht optimal genutzt bzw. betrieben werden.

Weist auf einen oder mehrere Links im Internet hin.

- <u>www.goetting.de/xxx</u>
- www.goetting.de/yyy

Weist auf Tipps für den leichteren Umgang mit dem Produkt hin.

- Der Haken zeigt eine Voraussetzung an.
- Der Pfeil zeigt einen Handlungsschritt an.
 Die Einrückung zeigt das Ergebnis einer Handlung oder einer Handlungssequenz an.
- Programmtexte und -variablen werden durch Verwendung einer Schriftart mit fester Buchstabenbreite hervorgehoben.
- Menüpunkte und Parameter werden kursiv dargestellt.
- Wenn für Eingaben bei der Bedienung von Programmen Tastenkombinationen verwendet werden, dann werden dazu jeweils die benötigten Tasten
 Hervorgehoben. Bei den Programmen der Götting KG können Sie üblicherweise große und kleine Buchstaben gleichwertig verwenden.

Einleitung

Die hier beschriebene Antenne eignet sich besonders für Fahrzeuge im Außenbereich, da die Elektronikeinheiten in den Antennengehäusen vergossen werden. Alle wichtigen Einstellungen, Abgleicharbeiten und Softwareupdates können über eine serielle Schnittstelle durchgeführt werden.

Die Antenne liefert ein Ausgabeformat, in dem zusätzliche weitergehende Systeminformation vom Anwender konfiguriert werden kann. Diese Zusatzinformation kann z. B. in einem Visualisierungssystem gespeichert werden und ermöglicht Aussagen über Zustand und Verfügbarkeit der Antennen und Transponder. Diese Systembeschreibung bezieht sich auf Geräte mit der Firmware 71895C2 ab Version 1.16.

2.1 Varianten der Transponder-Antenne

Tabelle 2 Variantenübersicht HG G-98760-C

HG G-98760					
Variante	Profibus®	CAN-Bus	RS 422	RS 232	
ZC		Х	Х		
YC	Х			Х	
XC	Х		Х		
WC		Х		Х	

2.2 Funktionsbeschreibung

Bei Überfahrt der Antenne über einen Transponder wird dieser mittels eines Energiefeldes von 128 kHz versorgt und überträgt seine Codenummer auf der halben Frequenz zur Antenne zurück. Über eine weitere Spule wird der Positionierimpuls erzeugt. Der in die Antenne integrierte Auswerter decodiert den Code.

Weiterhin werden diverse Kenngrößen der Antenne – wie z. B. Stromaufnahme und Versorgungsspannung etc. – gemessen und auf Wunsch dem seriellen Ausgabeprotokoll zugefügt.

Das serielle Signal wird als potenzialgetrennte RS 422 bzw. RS 232 ausgegeben. Auch der Positionierimpuls wird galvanisch getrennt. Weitere Schnittstellen sind CAN-Bus oder Profibus[®]. Eine Übersicht der verfügbaren Varianten der Antenne gibt Tabelle 2 oben.

Optional kann eine Wandlung des seriellen Signals in 16 Bit parallele Ausgänge (24 Volt geschaltet) für den Code in einem Interface erfolgen. Dieses ist für Hutschienenmontage geeignet und muss an einem vor Umwelteinflüssen geschützten Ort eingebaut werden (s. auch Abschnitt 6.6 auf Seite 26).

2.3 Positionierung

Zur Auslösung des Positionierimpulses müssen einige Bedingungen erfüllt sein:

- ✓ Die Empfangsspannung S (siehe Tabelle 19 auf Seite 30) muss die eingestellte Schwelle Level for Positioning (siehe Abschnitt 7.2.2.2 auf Seite 31) überschreiten.
- ✓ Ein Transpondercode muss fehlerfrei decodiert werden.
- Die Messspannung X muss ihr Vorzeichen wechseln (siehe Tabelle 19 auf Seite 30).

Es wird dann ein in seiner Dauer einstellbarer Impuls erzeugt.

Lieferumfang

Zum Lieferumfang gehören:

- eine Transponder-Antenne HG G-98760-C
- bei Profibus[®] Varianten (s. Tabelle 2 auf Seite 7): Steckersatz CONSET00001 (s. Tabelle 3 unten)
- bei CAN-Bus Varianten (s. Tabelle 2 auf Seite 7): Steckersatz CONSET00002 (s. Tabelle 3 unten)
- eine Gerätebeschreibung

3.1 Notwendiges Zubehör

Die Transponder-Antenne allein ist nicht ausreichend für die Positionserkennung von Fahrzeugen mit Transpondern. Um ein fahrerloses Transportsystem zu betreiben benötigen Sie außerdem:

- Anschlusskabel zur Verbindung der Antenne mit der Fahrzeugelektronik,
- mehrere Transponder im Boden.

Die Anschlusskabel können vom Kunden selbst konfektioniert (s. Pinbelegungen in Kapitel 6 auf Seite 16) oder über die Götting KG bestellt werden (s. u.).

Entnehmen Sie Tabelle 3 die Bestellnummern für das notwendige Zubehör.

Tabelle 3 Notwendiges Zubehör (Abschnitt 1 von 2)

Bestell-Nr.	Beschreibung
CONSET00001	 Steckersatz, gehört bei Antennen-Varianten mit Profibus[®] zum Lieferumfang. Beinhaltet: 1 x M23 Power-Steckverbinder 2 x M23 Profibus[®] Steckverbinder 1 x M23 Profibus[®] Abschlusswiderstand 1 x Montageschlüssel
CONSET00002	 Steckersatz, gehört bei Antennen-Varianten mit CAN-Bus zum Lieferumfang. Steckverbinder Schaltbau M3 bestehend aus: Gehäuse Stecker-/Buchsenträger Buchsen- und Stiftkontakte vergoldet Tülle für Kabeldurchmesser 10-13 mm + 13-16 mm Einbauanleitung
HG Z-09870ZB	für Varianten mit CAN-Bus: Anschlusskabel, einseitig Steckverbinder M3, andere Seite offen, Länge angeben
HG Z-09878ZA	für Varianten mit Profibus®: Anschlusskabel POWER, einseitig Steckverbinder M23, andere Seite offen, Länge angeben

Ĭ.

Bestell-Nr.	Beschreibung		
HG Z-09879ZA	für Varianten mit Profibus®: Anschlusskabel Profibus®, einseitig Steckverbinder M23, andere Seite offen, Länge angeben		
HW DEV00095/ HW DEV00098	Scheiben-Transponder Üblicherweise Montage auf der Fahrbahn Leseabstand: 30 – 80 mm		
HG G-70633ZB	Glas-Transponder Üblicherweise Montage im Boden Leseabstand: 50 – 150 mm		
HG G-70652ZC	Puck-Transponder Üblicherweise Montage auf der Fahr- bahn Leseabstand: 90 – 200 mm		
HG G-70653ZA	Puck-Transponder Üblicherweise Montage auf der Fahr- bahn Leseabstand: 90 – 200 mm		
HG G-71325XA	Stab-Transponder Üblicherweise Montage im Boden Leseabstand: 30 – 80 mm		

Tabelle 3 Notwendiges Zubehör (Abschnitt 2 von 2)

3.2 Optionales Zubehör

Entnehmen Sie Tabelle 4 die Bestellnummern für das optionale Zubehör.

Tabelle 4 Optionales Zubehör

Bestell-Nr.	Beschreibung		
HG G-06150-A	Seriell/parallel Interface wandelt einen seriellen RS232 bzw. RS422 Datenstrom in eine parallele Ausgabe, s. Abschnitt 6.6 auf Seite 26.		
HG G-81840ZA	Transponder-Programmiergerät zum Auslesen und Programmieren von Transponder-Codes Die Transponder können auch über die Antenne pro- grammiert werden, dies ist aber im eingebauten Zustand aufwändiger, da üblicherweise dazu das Fahrzeug über den zu programmierenden Transponder gefahren wer- den muss.		

GÖTTING

Gerätebeschreibung HG G-98760-C | Deutsch, Revision 05 | Stand: 25.09.2023

Montage

Im Gehäuse der Antenne finden Sie die Vorbereitungen für vier M5 Schrauben.

ACHTUNG

Vertauschen der Seiten

Wenn die Antenne falsch herum montiert wird, ist die Systemfunktion nicht gegeben.

Beachten Sie bei der Montage der Antenne die Orientierung

Bild 1 Befestigungsmöglichkeiten der Antenne

Damit die Systemeigenschaften nicht beeinträchtigt werden:

- Den Montageraum um bzw. über der Antenne möglichst mit einem Abstand von 80 mm "metallfrei" halten. Wenn Sie die Antenne direkt auf Metall montieren müssen, ist es wichtig, dass Sie sie neu abstimmen oder Autotuning aktivieren (siehe Antenna Tuning in Abschnitt 7.2.2.3 auf Seite 32).
- \checkmark Für die Funktion des Transpondersystems ist es sehr wichtig, dass im Frequenzbereich 64 ±4 kHz keine Störsignale durch getaktete Motoren etc. vorhanden sind!
- Eine problemlose Transponderlesung ist nur möglich, wenn die Transponder- \checkmark spur mittig unter der Antenne verläuft (max. ±5 cm Toleranz)! Weiter außerhalb wird die Lesung unzuverlässig, da die Signalpegel dort sehr schnell absinken.
- ✓ Es darf sich immer nur maximal ein Transponder im Erfassungsbereich befinden, zwischen zwei Transpondern muss daher ein Mindestabstand von 500 mm eingehalten werden.

Wenn Sie die Antenne bei Temperaturen unter 0° C einsetzen, müssen Sie die Heizung benutzen! Da bei -20° C Außentemperatur die Aufwärmzeit mit Heizung ca. 1 Stunde beträgt, sollte die Heizung an eine Standby-Versorgung angeschlossen sein.

İ.

5

Inbetriebnahme

Überprüfen Sie vor dem Anklemmen die Betriebsspannungen! Obwohl die verwendete serielle Schnittstelle sehr störungsunempfindlich ist, sollte das Kabel nicht direkt neben Energieversorgungskabeln liegen.

Stellen Sie sämtliche Verbindungen her, s. a. Abschnitte 3.1 auf Seite 9, 6.1.2 auf Seite 17 und 6.2.2 auf Seite 19. Für die weiteren Inbetriebnahmeschritte verbinden Sie einen Laptop mit der seriellen Schnittstelle der zu prüfenden Antenne – für Varianten mit RS 422 Schnittstelle wird ein geeignetes RS 422 nach RS 232-Interface benötigt. (Der Schnittstellenwandler gehört nicht zum Lieferumfang des Systems. Weitere Informationen erhalten Sie in der Einleitung von Kapitel 7 auf Seite 27.) Starten Sie dann das Monitorprogramm wie in Abschnitt 7.2.1 auf Seite 28 beschrieben.

Defaultwerte: Standardmäßig startet das System in der Betriebsart *Monitor only* 9.600 Baud. Beachten Sie jedoch, dass ein anderer Benutzer diese Einstellung geändert haben könnte.

- Halten Sie einen Transponder unter die Antenne. In der Statuszeile muss die Spannung S deutlich ansteigen. Der Code muss sofort erkannt und die Anzahl der Lesungen muss stetig bis auf 255 hochgezählt werden. Bei Querung des Transponders über die Antennenmittelachse in Fahrtrichtung muss ein Positionierimpuls erzeugt werden.
- Nehmen Sie den Transponder unter der Antenne weg. Wenn sich kein Transponder im Feld befindet, muss die Spannung S auf sehr kleine Werte abfallen. Die Codeanzeige und eine eventuelle Anzeige der Anzahl der Lesungen bleiben erhalten. Ist dies nicht der Fall, werden Störungen im Frequenzbereich von 64 kHz induziert.
- Sollten Sie die Antenne direkt auf Metall montiert haben, dann müssen Sie sie neu abstimmen (siehe auch Kapitel 4 auf Seite 11). Um die Positionier- und Decoderschwellen (siehe Abschnitt 7.2.2.2 auf Seite 31) einzustellen, ist es sinnvoll, eine komplette Fahrt über die Anlage aufzuzeichnen (siehe nächste Seite).

Bei der Antenne **HG G-98760ZC/WC** können dazu die serielle Schnittstelle (Abschnitt 7.2.2.8 auf Seite 37) oder das CAN-Bus Message Object 4 (Abschnitt 6.4.3.5 auf Seite 24 bzw. 7.2.2.5 auf Seite 35) benutzt werden. Bei der Antenne **HG G-98760YC/XC** können dazu die serielle Schnittstelle (Abschnitt 7.2.2.8 auf Seite 37) oder der Profibus[®] (Abschnitt 6.4.4 auf Seite 25 bzw. 7.2.2.6 auf Seite 36) benutzt werden. Bei der Benutzung des Profibus[®] werden die Informationen System Status, Code und U-Summe aus dem 16 Byte Datenblock benötigt.

Wenn bei der Fahrt keine Fehler aufgetreten sind, können Sie eventuell geänderte Werte speichern und anschließend das Monitorprogramm beenden. Bei der Änderung bestimmter Parameter ist ein Systemreset nötig (Aus- und Wiedereinschalten der Antenne). Dies wird im entsprechenden Abschnitt des Monitorprogramms (Abschnitt 7.2.2 auf Seite 29) erwähnt. Anschließend ist das System ordnungsgemäß in Betrieb genommen.

In den folgenden Diagrammen sind beispielhaft protokollierte Daten dargestellt:

Bild 2 Diagramm: Inbetriebnahme-Protokoll / geringer Störpegel; gezeigt wird der Verlauf der Summenspannung über die Strecke

Im Diagramm ist die Summenspannung über den Fahrweg aufgetragen. Der Noise (Störpegel) liegt bei ca. 50 Sampels, das Signal bei ca. 950. Die Transponderdekodierung ist einwandfrei, wie auch im folgenden Bild dargestellt.

Bild 3 Diagramm: Inbetriebnahme-Protokoll / ungestörte Transponderdecodierung

Bei einer Transponderquerung steigt zunächst die Summenspannung. Nach Überschreiten der Schwelle Threshold for Decoding wird das Bit TRANS_IN_FIELD gesetzt. Nach 4 x 8 ms (= 4 Datenpunkte) ist der Transpondercode decodiert. Die Dauer hängt von der Einstellung Number of Equal Codes im Menü Time & Code ab. In diesem Beispiel ist diese Zahl = 2, d. h., der eingehende Code wird mit 2 vorherigen Codes verglichen.

Nach Querung der Antennemitte wird der POSI-Puls ausgelöst. Die Dauer ist einstellbar. Die Bits TRANS_IN_FIELD und CODE_OK werden gelöscht, wenn die Summenspannung unter die Schwelle Threshold for Decoding fällt. In diesem Beispiel ist noch eine Reserve von 6 x 8 ms zum Auslösen des POSI-Puls vorhanden. Die Überfahrtgeschwindigkeit betrug ca. 1,9 m/s (300 mm Antennenlänge / (20 x 8 ms)).

In den folgenden Protokollen sind die Auswirkungen hoher Störpegel zu erkennen.

Der Störpegel erreicht bis zu 300 Sampels. Der Noise ist bei Transponder 207 so stark, dass er sogar das Transpondersignal beeinflusst. Als Auswirkung dauert es 9 x 8 ms bis der Transponder 203 decodiert wurde (siehe Bild 5 auf Seite 15). Dies ist für die langsame Überfahrtgeschwindigkeit von 1,1 m/s (300 mm / (33 x 8 ms)) noch ausreichend, um einen POSI-Puls zu erzeugen. Dieser Transponder könnte aber mit 3 m/s nicht mehr überfahren werden.

Gerätebeschreibung HG G-98760-C | Deutsch, Revision 05 | Stand: 25.09.2023

Bild 5 Diagramm: Inbetriebnahme-Protokoll / gestörte Decodierung (Funktion noch vorhanden)

Im folgenden Diagramm ist dargestellt, wie durch eine falsch eingestellte Schwelle Threshold for Decoding bzw. Threshold for Positioning falsche POSI-Pulse ausgelöst werden können.

In diesem Beispiel sind die Schwellen auf 100 Sampels gesetzt. Das Bit TRANS_IN_FIELD ist durchgängig gesetzt. Nach erfolgreicher Code-Decodierung wird zunächst ein korrekter POSI-Puls erzeugt. Da jetzt aber der Software nicht bekannt ist, dass das Antennenfeld verlassen wird, erzeugt jeder weitere Null-Durchgang der Differenzspannung (im Bild nicht dargestellt) einen weiteren POSI-Puls.

Komponenten und Bedienung

6.1 HG G 98760ZC/WC (mit CAN-Bus)

Bild 7 Positionierantenne HG G-98760ZC/WC

Die Antennen und die Auswerteelektronik sind in ein Gehäuse mit den Abmessungen 360 x 160 x 91 mm eingebaut. Der Lesebereich ist die Gehäuseoberseite. An der Gehäuseoberseite ist ein Deckel angebracht. Die 12-polige Einbaubuchse (Schaltbau M3) zeigt in Fahrtrichtung.

Innen ist die vollständig vergossene Auswerteelektronik eingebaut. Diese beinhaltet auch die Heizung. Der Anschluss erfolgt über eine 12-polige Schraub-Einbaubuchse der Firma Schaltbau (Typ M3) mit vergoldeten Kontakten.

6.1.1 Zeichnung

Bild 8 Zeichnung Antenne HG G-98760ZC/WC (mit Gehäuseabmessungen)

6.1.2 Belegung der 12-poligen Buchse

Die Kontaktbelegung des verwendeten Stecksystems lautet:

 Tabelle 5
 Kontaktbelegung der 12-poligen Buchse (CAN-Bus)

Kontakt	Bedeutung 98760ZC	98760WC	
1	+24 V (Antenne)		
2	GND (Antenne)		
3	+24 V (Heizung)		
4	GND (Heizung)		
5	+RX (RS 422)	RX (RS232)	
6	-RX (RS 422)	nicht belegt	
7	+TX (RS 422)	Tx (RS232)	
8	-TX (RS 422)	nicht belegt	
9	+ Posi Puls		
10	- Posi Puls		
11	CAN+		
12	CAN-		
PE	Signal Masse		

Weitere Informationen zum PosiPuls und zu seinen Anschlussmöglichkeiten finden Sie in Abschnitt 6.4.2 auf Seite 23.

Gerätebeschreibung HG G-98760-C | Deutsch, Revision 05 | Stand: 25.09.2023

6.2 HG G 98760YC/XC (mit Profibus[®])

6.2.1 Zeichnung

Bild 9 Zeichnung Antenne HG G-98760XC/YC (mit Gehäuseabmessungen und Foto des Abschlusswiderstands)

Die Antennen und die Auswerteelektronik sind in ein Gehäuse mit den Abmessungen 360 x 160 x 91 mm eingebaut. Der Lesebereich ist die Gehäuseoberseite. An der Gehäuseoberseite ist ein Deckel angebracht. Die drei 12-poligen Einbaubuchsen (M23; mit vergoldeten Kontakten) zeigen in Fahrtrichtung. Zu jeder Antenne wird ein passender Leitungs-Abschlusswiderstand mitgeliefert.

Innen ist die vollständig vergossene Auswerteelektronik eingebaut. Diese beinhaltet auch die Heizung. Der Anschluss erfolgt über die Buchsen X1 und X2 (Profibus®) und über den Stecker X3 (PosiPuls, RS232, Versorgung). Die eingebaute LED zeigt den Profibus®-Zustand **Datenaustausch** an.

Zu jeder Antenne wird ein Anschlussset mitgeliefert, welches die drei Verbinder, den Abschlusswiderstand sowie ein Montagewerkzeug beinhaltet. **Die jeweiligen Ka**beldurchmesser sind bei der Bestellung anzugeben.

Die Pin-Nummern sind auf den Steckern aufgedruckt. Bei Götting Kabeln sind die Pin-Nummern zusätzlich an den Litzen angebracht.

i

6.2.2 Pinbelegungen

Bei der Profibusversion sind zwei 12-polige Buchsen für den Bus sowie ein 12-poliger Stecker für die Antennenversorgung vorhanden.

Tabelle 6Kontaktbelegung der 12-poligen Profibusverbinder (doppelt vorhanden; X1 und X2,
siehe Bild 9 auf Seite 18)

Kontakt	Bedeutung	
1	Signal Masse	
2	Line A	
3	nicht belegt	
4	Line B	
5	nicht belegt	
6 +5V Signal		
7 +24 V DC / 0,6 A (Antenne)		
8	GND (Antenne)	
9	Schirm	
10	nicht belegt	
11	nicht belegt.	
12	RTS	
Gehäuse	Schirm	

 Tabelle 7
 Kontaktbelegung des 12-poligen Steckers X3 (siehe Bild 9 auf Seite 18) für die Antennenversorgung (Profibusversion)

Kontakt	HG G-98760YC HG G-98760XC		
1	+24 V DC / 0,6 A (Antenne)		
2	GND (Antenne)		
3	+24 V DC / 2 A (Heizung)		
4	GND (Heizung)		
5	Rx (RS232) + RX (RS422)		
6	nicht belegt - RX (RS422)		
7	Tx (RS232) + TX (RS422)		
8	nicht belegt - TX (RS422)		
9	+ Posi Puls		
10	- Posi Puls		
11	nicht belegt		
12	Signal Masse		
Gehäuse	Schirm		

i

Weitere Informationen zum PosiPuls und zu seinen Anschlussmöglichkeiten finden Sie in Abschnitt 6.4.2 auf Seite 23.

6.3 Einschaltverhalten

Nach Anlegen der Betriebsspannung benötigt die Antenne 10 Sekunden, bis sie auf Dateneingaben reagiert, bzw. Datentelegramme ausgibt. In den 10 Sekunden kann ein Softwaredownload gestartet werden (siehe auch Abschnitt 7.2.2.9 auf Seite 37). Weitere 16 Sekunden werden benötigt, falls die automatische Senderabstimmung aktiviert ist (Abschnitt 7.2.2.3 auf Seite 32).

6.4 Schnittstellen

6.4.1 Seriell (RS422 bzw. RS232)

Die serielle Ausgabe lässt sich vielfältig konfigurieren. Es sind die Übertragungsraten 9600 und 19200 Baud einstellbar, das Ausgabeprotokoll ist zwischen "transparent" und "3964R" wählbar und die Telegramminhalte selbst sind konfigurierbar. Aus einer Liste von Parametern können die Gewünschten in das Telegramm aufgenommen werden.

Über einen seriellen Befehl kann ein Systemmonitor aktiviert werden. Der digitale Positionierausgang zeigt die Querung der Antennenmitte in Fahrtrichtung an. Seine Dauer ist entweder im Millisekunden-Raster einstellbar oder aber er ist solange aktiv, bis der Transponder das Feld wieder verlassen hat. Weiterhin kann er auf einen Impuls pro Überfahrt begrenzt werden.

6.4.1.1 Liste der ausgebbaren Systemwerte

Ein Telegramm besteht aus maximal 21 Bytes. Die minimale Updaterate bei 9,6 KB ergibt sich damit aus

Bild 10 *Gleichung: Minimale Updaterate*

$$21 \frac{Byte}{Telegramm} \times 11 \frac{Bit}{Byte} \neq 9600 \frac{Bit}{s} = 24, 1 \frac{ms}{Telegramm}$$

Da es sich um eine Binärübertragung handelt, können – bei Verwendung der 3964R-Prozedur – weitere (DLE) Zeichen von dieser Prozedur eingefügt werden. Alle Mehrbyte-Variable werden mit High Byte zuerst oder Low Byte zuerst ausgegeben (konfigurierbar)!

Das 8 Bit Prüfzeichen wird nur bei Verwendung des transparenten Protokolls ausgegeben und bezieht das Startzeichen mit ein. Das Prüfzeichen (Protokoll transparent) kann nicht aus dem Datenblock entfernt werden. Es ist konfigurierbar, ob mit der eingestellten Updaterate permanent Telegramme ausgegeben werden oder nur, wenn sich ein Transponder im Feld befindet.

Tabelle der Datenwörter eines Telegramms bei 21 Byte Länge:

Byte #	Länge	Wertigkeit	Тур	Bedeutung
1	1 Byte	0x0000.0001	unsigned char	Startzeichen ASCII-061 : "="
2,3	2 Byte	0x0000.0002	signed int	konstant 0, Dummyeintrag
4,5	2 Byte	0x0000.0004	unsigned int	Die oberen 16 Bit des Transpondercodes (bzw. je nach Konfiguration die unteren 16 Bit; siehe auch Bild 17 auf Seite 33)
6,7	2 Byte	0x0000.0008	unsigned int	Die unteren (bzw. oberen; s. o.) 16 Bit des Transponder- codes
8,9	2 Byte	0x0000.0010	unsigned int	Vom Transponder erzeugte Spannung in der Rahmen- antenne in Samples
10,11	2 Byte	0x0000.0020	signed int	Vom Transponder erzeugte Spannung in der Differenz- spule in Samples
12	1 Byte	0x0000.0040	unsigned char	An der Antenne anliegende Betriebsspannung [x 100 mV]
13	1 Byte	0x0000.0080	unsigned char	Stromaufnahme [x 10 mA]
14	1 Byte	0x0000.0100	signed char	in der Antenne gemessene Temperatur [^o C]
15	1 Byte	0x0000.0200	unsigned char	Anzahl der Codelesungen der letzten Transponderque- rung
16,17	2 Byte	0x0000.0400	unsigned int	Frequenz des Empfängers [x 10 Hz]
18,19	2 Byte	0x0000.0800	unsigned int	Frequenz des Senders [x 10 Hz]
20,21	2 Byte	0x0000.1000	unsigned int	Systemstatus in Binärcodierung, s. Tabelle 9 unten
(22)	1 Byte		unsigned char	Prüfzeichen (XOR exklusiv-verodert über alle Zeichen, nur bei transparentem Protokoll)

Tabelle 8	Datenwörter	eines	Telearamms	bei 21	Bvte Länae
rasono o	Datonition	011100	rologiannio	20121	byto Lango

In der folgenden Tabelle finden Sie eine Auflistung der Binärcodierung des Systemstatus:

 Tabelle 9
 Mögliche Systemstatus-Meldungen (Abschnitt 1 von 2)

Wertigkeit	Name	Bedeutung	
0x0001	DEC_HW_ERROR	Code Decoder Hardware fehlerhaft	
0x0002	CODE_CRC_ERR	Transpondercode mit CRC-Fehler empfangen	
0x0004	CODE_PAR_ERR	Transpondercode mit Paritätsfehler empfangen	
0x0008	CODE_NIB_ERR	RW-Transpondercode mit falschem High-Nibble emp fangen	
0x0010	EEPROM_ERROR	Parameter E ² Prom nicht adressierbar	
0x0020	PARAM_CRC_ER	Parametersatz nicht mehr sicher	
0x0040	FRQ_RX_ERROR	Empfangsoszillator nicht auf eingestellter Frequenz	
0x0080	FRQ_TX_ERROR	Sendeoszillator nicht auf eingestellter Frequenz	
0x0100	REF_TRANS_ON	Hinweis: Referenztransponder ist eingeschaltet	
0x0200	TRANS_IN_FIELD	Transponder innerhalb des Antennenfeldes *)	
0x0400	CODE_OK	Code fehlerfrei decodiert *)	
0x0800	SEGMENT-	Es befindet sich ein Transponder unter der Antennen- hälfte, an der der Stecker bzw. das Kabel montiert sind	

Wertigkeit	Name	Bedeutung
0x1000	POSIPULS	Transponder hat Antennenmitte gequert **)
0x2000		
0x4000		
0x8000		
*) Diese Bits we	rden nach Austritt des Transpon	ders aus dem Antennenfeld gelöscht

 Tabelle 9
 Mögliche Systemstatus-Meldungen (Abschnitt 2 von 2)

**) Dieses Bit wird entweder nach einer bestimmten Zeit oder nach Austritt des Transponders aus dem Lesebereich gelöscht (siehe 7.2.2.2 auf Seite 31, Menüpunkt 🗵)

> Die Fehler 0x0002 und 0x0004 können auch bei einer normalen Transponderquerung auftreten, falls die Codeübertragung durch nachlassenden Pegel abgebrochen wird. Mit dem Hinweis 0x0100 (REF_TRANS_ON) kann überprüft werden, ob vergessen wurde, den entsprechenden Ausschaltbefehl zu übertragen (dann werden Bahntransponder nicht mehr ordnungsgemäß gelesen).

6.4.1.2 Liste der Systemkommandos

Ein Kommando-Telegramm besteht immer aus vier Bytes mit dem eigentlichen Kommando samt Parametern. Bei der Prozedur "transparent" (siehe auch Anhang, Abschnitt 11.3 auf Seite 46) müssen zusätzlich ein Startzeichen und eine Prüfsumme (XOR-Verknüpfung aller Bytes inkl. Startzeichen) übergeben werden.

Es sind 3 Kommandos definiert:

Nr.	Bedeutung	Prozedur		Startz.	Kommandobyte	Parameter	Prüfsumme
1	Umschalten in den	3964R	HEX		4D ₁₆ 4F ₁₆	4E ₁₆ 49 ₁₆	
	Monitormodus		ASCII		МО	NI	
	Abschnitt 7.2 auf Seite	transparent	HEX	3D ₁₆	4D ₁₆ 4F ₁₆	4E ₁₆ 49 ₁₆	38 ₁₆
	28)		ASCII	=	МО	NI	8
2	Referenztransponder	3964R	HEX		52 ₁₆ 54 ₁₆	30 ₁₆ 30 ₁₆	
	ausschalten		ASCII		RT	00	
		transparent	HEX	3D ₁₆	52 ₁₆ 54 ₁₆	30 ₁₆ 30 ₁₆	3B ₁₆
			ASCII	=	RT	00	•
3	Referenztransponder	3964R	HEX		52 ₁₆ 54 ₁₆	31 ₁₆ 31 ₁₆	
	einschalten		ASCII		RT	11	
		transparent	HEX	3D ₁₆	52 ₁₆ 54 ₁₆	31 ₁₆ 31 ₁₆	3B ₁₆
			ASCII	=	RT	11	. ,

 Tabelle 10
 Liste der Systemkommandos

Weitere Informationen zu Nummer:

- 1. Der Monitormodus sollte nicht im normalen Betrieb (z. B. von einer SPS aus) benutzt werden, da die darauf folgende Ausgabe nicht mehr nach transparentem oder 3964R Protokoll erfolgt, sondern nur zur Darstellung auf einem VT52-Terminal geeignet ist, und der manuellen Änderung von Parametern dient.
- 2. Ein eingeschalteter Referenztransponder wird durch Setzen des entsprechenden Bits im Systemfehlerwort "0x0100" signalisiert (gilt nur für Systeme mit Referenztransponder).

Beachten Sie, dass mit eingeschaltetem Referenztransponder die Bahntransponder nicht mehr eindeutig verarbeitet werden können, d. h. sie werden entweder unterdrückt, oder die Position wird verfälscht.

3. Das erfolgreiche Ausschalten des Referenztransponders wird durch Löschen des Bits "0x0100" im Systemstatuswort signalisiert.

6.4.1.3 Systemmonitor

Im Monitormodus lässt sich das System menügesteuert konfigurieren. Lesen Sie dazu Abschnitt 7.2 auf Seite 28.

6.4.2 Positionierimpuls

Der digitale Positionierausgang zeigt die Querung der Antennenmitte in Fahrtrichtung an. Seine Dauer ist im Monitormodus im Millisekunden-Raster einstellbar (siehe Abschnitt 7.2.2.2 auf Seite 31). Weiterhin kann er auf einen Impuls pro Überfahrt begrenzt werden.

Die beiden Positionieranschlüsse werden separat herausgeführt und nicht intern mit +24 V oder GND verbunden, da in einigen Systemen unbedingt eine strikte Potenzialtrennung eingehalten werden muss. Aus Sicherheitsgründen ist eine 20 mA Strombegrenzung in der Antenne für diese Ausgänge implementiert. Falls z. B. ein 24 V Spannungsausgang gewünscht wird, kann Kontakt 9 mit +24 V verbunden und Kontakt 10 über einen Widerstand von 1 KOhm mit GND verbunden werden.

Bild 11 Anschlussmöglichkeiten Positionierimpuls PosiPuls

6.4.3 CAN

6.4.3.1 Beschreibung

Es ist der Basic oder Full-CAN-Modus konfigurierbar. Die CAN-Parameter können über den Systemmonitor eingestellt werden (siehe auch Abschnitt 7.2.2.5 auf Seite 35). Das interne CAN-Modul basiert auf der CAN Spezifikation V2.0 Teil B. Es werden Standard- oder Extended-Frames gesendet (einstellbar). Das Bit-Timing ist ebenso wie der Identifier im Systemmonitor einstellbar.

Es können 4 unterschiedliche CAN Message Objects ausgegeben und 1 empfangen werden. Es ist konfigurierbar, ob mit der einstellbaren Updaterate permanent Telegramme ausgegeben werden oder nur, wenn sich ein Transponder im Feld befindet. Zusätzlich ist auch ein Remotebetrieb einstellbar.

Die Objekte werden durch Eingabe einer Adresse ungleich 0 im CAN-Menü aktiviert.

6.4.3.2 CAN Message Object 1 (Sende-Objekt; kompatibel zu früheren Firmware-Versionen)

Tabelle 11 Aufbau des CAN Message Objects 1

Byte #	Länge	Тур	Bedeutung
1,2	2 Byte	unsigned int	Systemzustand nach Tabelle 9 auf Seite 21
3,4,5,6	4 Byte	unsigned long	32 Bit Transpondercode
7	1 Byte	unsigned char	Anzahl der Codelesungen der letzten Transpon- derquerung

6.4.3.3 CAN Message Object 2 (A-Identifier; Sende-Objekt)

 Tabelle 12
 Aufbau des CAN Message Objects 2

Byte #	Länge	Тур	Bedeutung
1,2	2 Byte	unsigned int	Systemzustand nach Tabelle 9 auf Seite 21
3,4,5,6	4 Byte	unsigned long	32 Bit Transpondercode
7,8	2 Byte	signed int	Dummyeintrag

6.4.3.4 CAN Message Object 3 (B Identifier; Sende-Objekt)

Tabelle 13 Aufbau des CAN Message Objects 3

Byte #	Länge	Тур	Bedeutung
1,2	2 Byte	unsigned int	Summenspannung
3,4	2 Byte	signed int	Differenzspannung
5	1 Byte	unsigned char	Anzahl der Codelesungen der letzten Transpon- derquerung
6	1 Byte	unsigned char	Betriebsspannung
7	1 Byte	unsigned char	Betriebsstrom
8	1 Byte	signed char	Temperatur

Zur Interpretation der Werte des Message Objects 3 siehe auch Tabelle 8 auf Seite 21. Dieses Message Object dient zur Überwachung von Parametern.

6.4.3.5 CAN Message Object 4 (D Identifier; Sende-Objekt)

Tabelle 14 Aufbau des CAN Message Objects 4

Byte #	Länge	Тур	Bedeutung
1,2	2 Byte	unsigned int	Systemzustand nach Tabelle 9 auf Seite 21
3,4	2 Byte	unsigned int	16 Bit Transpondercode
5,6	2 Byte	unsigned int	Summenspannung
7	1 Byte	unsigned char	Anzahl der Codelesungen
8	1 Byte	unsigned char	Anzahl der Lesefehler

Zur Interpretation der Werte des Message Objects 4 siehe auch Tabelle 8 auf Seite 21. Dieses Message Object dient zur Inbetriebnahme oder für Servicezwecke.

6.4.3.6 CAN Message Object 5 (Referenztransponder; Empfangs-Objekt)

Auch der Referenztransponder kann über den CAN-Bus aktiviert/deaktiviert werden. Dazu ist ein Message Object mit der gleichen Adresse wie Message Object 1 und zwei Byte Länge zu senden.

Tabelle 15 Aufbau des CAN Message Objects 5

Byte #	Länge	Тур	Bedeutung
1	1 Byte	unsigned char	= 01: Referenztransponder EIN = 00: Referenztransponder AUS
2	1 Byte	unsigned char	z. Zt. frei

6.4.4 Profibus®

6.4.4.1 Profibus[®] Input Bytes

Input Bytes

Anzahl Input Bytes	Byte #	Länge	Тур	Byte Reihenfolge *)	Bedeutung
6	1	2 Byte	unsigned int	HiByte (LoByte)	Systemstatus in Binärcodierung
	2			LoByte (HiByte)	
	3	4 Byte	unsigned long	HiByte (LoByte)	Transpondercode
	4]			
	5				
	6			LoByte (HiByte)	
7	7	1 Byte	unsigned char		An der Antenne anliegende Betriebs- spannung [x 100 mV]
8	8	1 Byte	unsigned char		Stromaufnahme [x 10 mA]
9	9	1 Byte	unsigned char		in der Antenne gemessene Temperatur [^o C]
12	10	2 Byte	signed int		Dummy Eintrag
	11				
	12	1 Byte	unsigned char		Anzahl der Codelesungen
14	13	2 Byte	signed int	HiByte (LoByte)	Vom Transponder erzeugte Spannung
	14			LoByte (HiByte)	in der Differenzspule in Samples
16	15	2 Byte	unsigned int	HiByte (LoByte)	Vom Transponder erzeugte Spannung
	16			LoByte (HiByte)	in der Rahmenantenne in Samples
*) = Bei entspr	echend g	gesetztei	Order of Da	ta Transfer(siehe Abschnitt 7.2.2.6 auf Seite 36).

Je nach Konfigurierung des Masters mit Hilfe des passenden GSD-Files (siehe Anhang, Abschnitt 11.4 auf Seite 47) wird die entsprechende Anzahl an Input Bytes übertragen. Für die Anzahl der Inputbyes sind die Werte 6, 7, 8, 9, 11, 12, 14, 16 möglich (siehe auch Tabelle 16).

6.4.4.2 Output Byte

In diesem Byte wird nur das niederwertigste Bit zum Schalten des Referenztransponders benutzt (Positive Flanke des Bits schaltet den Transponder ein). Dieser Zustand wird im Systemstatus an der entsprechenden Stelle angezeigt (siehe Tabelle 9 auf Seite 21).

6.5 Softwareupdate

Bei den Antennen ist es möglich, bei Bedarf ein Softwareupdate über die serielle Schnittstelle durchzuführen. Lesen Sie dazu Abschnitt 7.3 auf Seite 38.

6.6 Zubehör: Optionales seriell/parallel Interface HG G-06150-A

Das Interface gibt es in zwei Varianten für RS 232 oder RS 422. Die Variante muss passend zur Antenne ausgewählt werden.

Weitere Informationen zum Interface finden Sie unter folgender Adresse: <u>https://www.goetting.de/komponenten/06150</u>

Bild 12 Interface HG G-06150-A zur Hutschienenmontage

Das seriell/parallel Interface ist in einem für Hutschienenmontage geeigneten Gehäuse aufgebaut. Es wird der serielle Datenstrom der RS 232 oder RS 422 zugeführt. Dazu muss in der Antenne die serielle Ausgabe auf transparentes Protokoll mit den Dateninhalten CODE (untere 16 Bit), Dummy und Systemzustand eingestellt sein. Geben Sie dazu dort im entsprechenden Menü für die Telegram Content Mask den Wert 100B ein (siehe Bild 17 auf Seite 33). Die Baudrate muss 19200 Baud betragen.

Byte #	Länge	Wertigkeit	Тур	Bedeutung
1	1 Byte	0x0000.0001	ASCII-061 : "="	Startzeichen
2,3	2 Byte	0x0000.0002	signed int	Dummy
4,5	2 Byte	0x0000.0008	unsigned int	Die unteren 16 Bit des Transpondercodes
6,7	2 Byte	0x0000.1000	unsigned int	Systemzustand
8	1 Byte		unsigned char	Prüfzeichen

 Tabelle 17
 Ausgabeformat bei Verwendung des seriell/parallel Interfaces

Aus diesem Datenstrom wird der **Transpondercode** in eine 16 Bit parallele Ausgabe gewandelt. Der Code liegt an den Ausgängen an, bis ein neuer Code empfangen wird. Zusätzlich wird 10 ms nach Anlegen der Codebits ein Data_Ready-Impuls von 100 ms Länge erzeugt, wenn die Antenne einen Transponder quert. Somit erzeugt auch ein gleicher Transponder bei Neueintritt ins Antennenfeld (z. B. durch Fahrtrichtungswechsel) einen neuen Data_Ready-Impuls.

Ob sich ein Transponder unter der Antenne befindet, wird durch das Signal Data_Valid angezeigt. Falls kein Transponder im Feld steht, wird 0 V ausgegeben. Die parallelen Ausgänge, Data_Ready und Data_Valid werden bei Aktivierung gegen +Usps (24V) geschaltet und sind nicht strombegrenzt. Die Ausgänge sind nicht potenzialgetrennt.

Gerätebeschreibung HG G-98760-C | Deutsch, Revision 05 | Stand: 25.09.2023

Das System kann über eine in der Antenne laufende Software konfiguriert werden. Um die Software ansprechen zu können, müssen Sie die serielle Schnittstelle eines handelsüblichen PCs mit der seriellen Schnittstelle der Antenne verbinden. Bei Antennen-Varianten mit RS 422 Schnittstelle ist dazu ein Schnittstellenwandler von RS 422 auf RS 232 nötig. Starten Sie anschließend ein Terminalprogramm auf dem PC.

i

Der Schnittstellenwandler gehört nicht zum Lieferumfang des Systems! Er kann aber bei vielen bekannten Distributoren bezogen werden. So finden Sie z. B. die Firma RS Components im Internet unter folgender Adresse. Sehen Sie sich im Katalog der Firma den Bereich Industrie-Schnittstellenkonverter an.

http://www.rs-components.com/rs/

7.1 Terminalprogramm

Wir beziehen uns im Folgenden auf das Terminalprogramm HyperTerminal[®], das auf dem Betriebssystem Windows läuft. Das Terminalprogramm HyperTerminal können Sie unter folgendem Link herunterladen:

http://www.hilgraeve.com/hyperterminal/

Sie können aber auch ein beliebiges anderes Terminalprogramm einsetzen, das die VT52-Emulation beherrscht.

Wenn Sie ein anderes Terminalprogramm verwenden:

- ✓ Beachten Sie die mit dem Terminalprogramm mitgelieferte Dokumentation.
- ✓ Stellen Sie im Terminalprogramm die in Tabelle 18 genannten Werte ein.

Tabelle 18 Einstellungen im Terminalprogramm

Terminalprogramm-Einstellungen			
Baudrate	9600 bzw. 19200 Baud je nach Systemkonfiguration		
Terminalemulation	VT52		
Parität	Gerade (Even)		
Datenbits	8		
Stoppbits	1		
Zeichenverzögerungszeit	1 ms		
Zeilenverzögerungszeit	0 ms		
PC-Schnittstelle (Port)	COM1 kann auf einzelnen PCs abweichen (s. u.)		

Wenn Sie einen anderen Port als COM1 verwenden und HyperTerminal einsetzen, dann stellen Sie den Port folgendermaßen um:

1. Wählen Sie im Menü *Datei* den Unterpunkt *Eigenschaften* (oder klicken Sie auf das Icon 📓). Es öffnet sich folgendes Fenster:

2. Wählen Sie im Unterpunkt Verbinden über die Direktverbindung über den entsprechenden Port aus und bestätigen Sie mit <u>k</u>. Speichern Sie die veränderten Werte, wenn Sie beim Beenden von HyperTerminal eine entsprechende Meldung erhalten.

7.2 Systemmonitor

Im **Monitormodus** lässt sich das System menügesteuert konfigurieren. Um den Monitormodus verwenden zu können, müssen Sie wissen, welches Protokoll in Ihrer Antenne eingestellt ist.

7.2.1 Monitorprogramm starten

Wie das Monitorprogramm gestartet wird, unterscheidet sich je nach der aktuell aktiven Prozedur (siehe Abschnitt 7.2.2.4 auf Seite 33).

7.2.1.1 Prozedur Monitor only

Falls die Antenne auf die Prozedur "Monitor only" eingestellt ist, wird 10 s nach Einschalten der Monitormodus gestartet. Sie brauchen dann keine Dateien zu übertragen und können den Abschnitt 7.2.1.2 überspringen.

7.2.1.2 Prozedur 3964R/transparent

Der Befehl zum Umschalten in den Monitormodus sollte direkt mit einem PC eingegeben werden. Sie benötigen für den Start einige Konfigurationsdateien (kleine Textund HyperTerminal-Konfigurationsdateien), die Sie jederzeit unter der folgenden Adresse von unserem Internet-Server herunterladen können.

https://www.goetting.de/komponenten/transponderconf

Starten Sie dann Ihr Terminalprogramm. Wenn Sie HyperTerminal verwenden, können Sie das Terminalprogramm direkt durch doppeltes Anklicken der entsprechenden *.ht-Datei starten (Monitor9600.ht bei 9600 Baud und Monitor19200.ht bei 19200 Baud). Passen Sie gegebenenfalls den COM-Port an.

Nach dem Einschalten und minimal 10 (bzw. 26) Sekunden können Sie mit dem Terminalprogramm die passende der Textdateien übertragen. Folgende vier Dateien stehen zur Verfügung:

1. Mon3964r.txt

Übertragen, wenn das System auf Prozedur **3964R** mit "**HighByte zuerst**" geschaltet ist. Die Datei enthält in hexadezimaler Notation die Zeichen: 0x02 0x4D 0x4F 0x4E 0x49 0x10 0x03 0x16

2. Mon6439r.txt

Übertragen, wenn das System auf Prozedur **3964R** mit **"LowByte zuerst"** geschaltet ist. Die Datei enthält in hexadezimaler Notation die Zeichen: 0x02 0x4F 0x4D 0x49 0x4E 0x10 0x03 0x16

3. Montrans.txt

Übertragen, wenn das System auf Prozedur **Transparent** mit **"HighByte zuerst**" geschaltet ist. Die Datei enthält in hexadezimaler Notation die Zeichen: 0x3D 0x4D 0x4F 0x4E 0x49 0x38

4. Transmon.txt

Übertragen, wenn das System auf Prozedur **Transparent** mit **"LowByte zuerst**" geschaltet ist. Die Datei enthält in hexadezimaler Notation die Zeichen: 0x3D 0x4F 0x4D 0x49 0x4E 0x38

Mit HyperTerminal übertragen Sie die Datei folgendermaßen:

1. Wählen Sie im Menü Übertragung den Unterpunkt Textdatei senden. Es öffnet sich folgendes Fenster:

Textdatei üb <u>S</u> uchen in:	ertragen	- E	?× 1	1
MON3964 MON6439 MONTRAN TRANSMO	R.TXT IS.TXT N.TXT			
Dateiname:	M0N3964B TXT		Öffnen	
Dateityp:	Textdatei (*.TXT)	•	Abbrechen	

- 2. Wechseln Sie zu dem Verzeichnis oder Datenträger, in dem sich die heruntergeladenen Dateien befinden und wählen Sie die entsprechende *.txt-Datei aus.
- Klicken Sie auf
 Die Datei wird übertragen und (bei korrekt gewählter Datei) das Monitorprogramm gestartet. Die Menüs erscheinen dann direkt im HyperTerminal-Fenster. Sie sehen zuerst das Grundmenü aus Bild 13 auf Seite 30.

7.2.2 Monitorprogramm bedienen

Falls Sie Schnittstellenparameter ändern, werden diese erst nach einem Systemreset (durch Aus- und wieder Einschalten) aktiv. Anschließend müssen Sie gegebenenfalls ein anderes der vier Textdokumente zum Monitoraufruf benutzen.

Nach dem Übertragen der Textdatei (siehe Abschnitt 7.2.1) startet das Monitorprogramm mit dem Grundmenü. Wenn nicht, gehen Sie möglicherweise von einer falschen Systemkonfiguration aus, verwenden ein anderes Terminalprogramm und haben keine Zeichenverzögerung von 1 ms eingestellt oder Sie haben nach dem Einschalten der Antennen nicht mindestens 10 Sekunden gewartet.

7.2.2.1 Grundmenü

Bild 13 Grundmenü des Monitorprogramms

```
S:0055
         X:+0007
                                      Code: 00000000 Read:
                                                                0:
Frx[/Hz]:66880 Ftx[/Hz]:127960
U[/mV]:24200 I[/mA]: 240 T[Grd.C]:+19 E: 0800 N:
                                                               0
    (P)assword
     (T)ime & Code
    (F)requency & Antenna tuning
(S)erial Output
    C(A)N-Parameters
    P(r)ofibus-Parameters
    (L)oad Values to EEProm
    (W)rite Transponder
    (E)rror - Status
    Cs(v) (38,4 KB Code,Sum,Tr,Co,+-,Pos,Read,Cnt<crlf>)
     (U)pdate Firmware
    Serv(i)ce
    Software Version 71895C21.14 / 19.MAR.2009
                                                        Serial Number: 9999999
```

In jedem der Menübildschirme werden in den obersten drei Zeilen wichtige Systemvariable ausgegeben (siehe Tabelle 19), wie sie auch in dem in Abschnitt 6.4.1.1 auf Seite 20 beschriebenen Ausgabetelegramm vorkommen. In der letzten Zeile des Bildschirms werden eventuelle Statusmeldungen ausgegeben, wenn z. B. zulässige Wertebereiche bei der Eingabe missachtet wurden.

 Tabelle 19
 Bedeutungen der Systemvariable (Monitorprogramm)

Bedeutunger	n der Systemvariable
S	gemessene Spannung der Summenspule im Gehäusedeckel in Samples (max. 1023).
Х	gemessene Spannung der Differenzspule im Gehäusedeckel in Samples (max. ±1023).
Code	32 Bits des decodierten Transpondercodes in hexadezimaler Schreibweise. Der Code wird gelöscht, wenn die Spannung unter den Threshold for Decoding fällt (s. Abschnitt 7.2.2.2 auf Seite 31).
Read	Die Anzahl der Codelesungen pro Transponderquerung. Der Wert wird bis zum neuen Eintritt eines Transponders gehalten. Wird auch durch Noise gelöscht.
Frx [Hz] und Ftx [Hz]	Anzeige von wichtigen Systemfrequenzen für Sendung und Emp- fang. Diese Frequenzen werden permanent überwacht und im Sys- temstatuswort berücksichtigt.
U [mV]	Versorgungsspannung der Prozessorplatine auf 100 mV genau gemessen. Sie liegt bedingt durch diverse Schutzmaßnahmen immer etwas unter der zugeführten Versorgungsspannung.
I [mA]	Von der Positioniereinheit aufgenommener Strom auf 10 mA genau gemessen.
T [Grd.C]	In der Einheit gemessene ungefähre Temperatur in 5º Schritten. Der Sensor sitzt in der Nähe eines Kühlbleches.
E	Systemfehlerwort in hexadezimaler Darstellung. Die Bedeutung der einzelnen Bits wird in Tabelle 9 auf Seite 21 erläutert.
N	Die Anzahl der Lesefehler pro Transponderquerung. Der Wert wird bis zum Erkennen eines neuen Transponders gehalten.

Die weiteren Menüpunkte werden durch Eingabe des (geklammerten Zeichens) aktiviert. Bevor geänderte Werte in den Permanentspeicher übernommen werden, muss mit (P)assword das Passwort **815** eingegeben werden. Es schützt vor unbeabsichtigten Änderungen von Werten. Mit (L)oad Values to EEProm werden die Werte nach Änderung und Passworteingabe gespeichert.

Durch Eingabe von (E)rror - Status können Sie sich den Systemstatus im Klartext erläutern lassen.

Im Folgenden werden nacheinander die weiteren Menüpunkte erläutert:

- (I)ime & Code (Abschnitt 7.2.2.2 auf Seite 31)
- (E)requency & Antenna tuning (Abschnitt 7.2.2.3 auf Seite 32)
- (S)erial Output (Abschnitt 7.2.2.4 auf Seite 33)
- C(A)N Parameters (Abschnitt 7.2.2.5 auf Seite 35)
- P(E)ofibus-Parameters (Abschnitt 7.2.2.6 auf Seite 36)
- (W)rite Transponder (Abschnitt 7.2.2.7 auf Seite 37)
- CS(☑) (Abschnitt 7.2.2.8 auf Seite 37)
- (U)pdate Firmware (Abschnitt 7.2.2.9 auf Seite 37)
- (①)uit Monitor: Durch Drücken von ② kann das Monitorprogramm verlassen werden, sofern die seriellen Prozeduren 3964R oder transparent aktiv sind. In der Prozedur Monitor only kann das Monitorprogramm nicht beendet werden.

7.2.2.2 (T)ime & Code

In diesem Menü werden Timingwerte für die Transponder-Decodierung, die Positionsberechnung und den Positionierimpuls festgelegt. Die ersten drei Werte sind durch das gewählte Codeübertragungsverfahren bestimmt und **können nicht geändert** werden:

Bild 14 Menü: (T)ime & Code

S:0008 X:+0006 Code: 00000000 Rea Frx[/Hz]:66800 Ftx[/Hz]:127980	d: 0:		
U[/mV]:22400 I[/mA]: 290 T[Grd.C]:+24	E: 0000	N: 0	
(S)elect Code Channel		S	
(H)igh-Nibble of RW-Code	[0F,>F]:	10	
(N)umber of equal Codes	[015]:	1	
(L)evel for Positioning	[10.1023]:	256	
PosiPulse (a)fter Decoding		1	
(T)hreshold Decoding	[10.1023]:	256	
(1) switch Reference Transponder:		0	
(P)osi-Pulse Time	[n*1ms]:	100	
(0)ne Positioning Pulse per Crossin	g	0	
(X) Timed Positioning Pulse		1	
(Q)uit Menue			

Mit 🖻 legen Sie fest, welcher der zwei prinzipiell vorhandenen Empfangskanäle für die Codeübertragung genutzt wird. In der Regel ist dies der Summenkanal S. Es ist aber auch möglich, zur Störungsminimierung den Differenzkanal zu wählen.

i

Wenn Sie den Differenzkanal verwenden, fällt in der Mitte (bei der Nullstelle) in einem eng begrenzten Gebiet der Code weg (siehe Bild 25 auf Seite 45)!

Da die Code-Übertragung bei Trovan[™] Transpondern nur durch einfache Paritätsprüfung gesichert wird, wurden zwei weitere Sicherungsstrategien implementiert:

- Bei RW-Transpondern können die höchsten vier Bits auf einen voreingestellten Wert (0-F) überprüft werden. Dieser Wert kann hier mit H festgelegt werden und muss dann auch entsprechend in die Transponder zusammen mit dem gewünschten Code programmiert werden. Bei Eingaben größer F – also z. B. 10 – wird die Überprüfung abgeschaltet.
- 2. Für RO- und RW-Transponder kann die Anzahl von zu vergleichenden Codes zwischen 0 und 15 mit S gewählt werden. Bei einer Eingabe von 0 wird jeder empfangene Code sofort ausgegeben, bei 1 wird ein empfangener Code mit dem genau davor empfangenen Code verglichen usw. Beachten Sie, dass durch dieses Verfahren die maximal mögliche Überfahrtgeschwindigkeit absinkt, da die nötige Übertragungsdauer mit (n+1) x 8 ms zunimmt.

Mit 🕒 wird bestimmt, ab welcher Spannung S die Positionierimpuls-Ausgabe freigegeben wird, um Falschausgaben durch Antennennebenkeulen zu unterdrücken.

Mit A wird die Ausgabe eines Positionierimpulses nur nach der Decodierung eines Transponders freigegeben. Bei einer durch Störfrequenzen beeinflussten Umgebung werden so fehlerhafte Positionierimpulse vermieden.

Mit 🔟 bestimmen Sie, ab welcher Spannung S die Code-Decodierung beginnt, um Decodierungs-Versuche bei einem zu schwachen Signal gegebenenfalls zu unterdrücken.

Mit 1 wird der Referenztransponder aktiviert (1). Diese Aktivierung muss dann auch in der ersten Zeile durch die ansteigenden Spannungen, den entsprechenden Code und die steigende Anzahl der Lesungen zu sehen sein. Der Referenztransponder wird bei Verlassen des Monitors automatisch deaktiviert (0).

Die Dauer des Positionierimpulses können Sie mit 🖻 im 1 ms Raster einstellen. Mit 🖸 legen Sie fest, ob jede Querung der Antennenmittelachse einen Positionierimpuls erzeugt (0; z. B. beim Vor- und Zurückfahren direkt über einem Transponder), oder ob nur ein Impuls (1) je Kreuzung eines Transponders ausgegeben wird. Zur erneuten Freigabe muss dann die Spannung S unter die Schwelle Threshold for Decoding fallen.

Mit 🖾 kann gewählt werden, ob der Posipuls und das entsprechende Bit im Systemstatus nach der mit P eingestellten Zeit abgeschaltet wird oder aber nach dem Absinken der Spannung s unter die mit 🗀 eingestellte Schwelle.

7.2.2.3 (F)requency & Antenna Tuning

Bild 15 Menü: (F) requency & Antenna Tuning

S:0000 Frx[/H U[/mV]	6 X:+0007 Hz]:66800 Ftx]:22500 I[/mA	Code: 0000000 [/Hz]:127970]: 290 T[Grd.0	0 Read: C]:+28	0: E: 0000 N:	0
(1	R)x_Frequency	[/Hz]: 1	553000 (66750 Hz)	
A (/ SV	(u)to-Tune A)ntenna-Tunin witch (T)ransm	ng [015,+,-]: nitter:	0 7 1		
((Q)uit Menue				

Die einzustellende **Empfangsfrequenz** "(\mathbb{R})x" wird mit F_{ZF} = 455 kHz und der Bandbreite B = 5,5 kHz nach folgender Gleichung berechnet:

Bild 16 Gleichung: Berechnung der Empfangsfrequenz

$$F_{rx} = 4 \times \left(F_{ZF} - 64 \text{ kHz} - \frac{B}{2}\right)$$

Da es sich hier um einen Einseitenband-Empfang handelt, ist nach dieser Gleichung für das obere Seitenband 1553000 Hz einzustellen, für das untere 1575000 Hz.

Mit 🛄 kann das Autotuning aktiviert werden. Nach jedem Einschalten wird dabei der Senderkreis neu abgeglichen. Dieser Vorgang dauert ca. 16 sec. Anschließend wird alle 10 Sekunden die Abstimmung kontrolliert (wenn kein Transponder im Feld ist) und ggfs. nachgestimmt.

Mit A oder der der der Taste können Sie die Sendantenne abstimmen, indem Sie die Stromaufnahme auf Maximum stellen (dadurch erreichen Sie die größte Reichweite). Über können Sie den Sender für Kontrollzwecke ein- (1) bzw. ausschalten (0). Wird bei verlassen des Menüs automatisch auf 1 gesetzt.

7.2.2.4 (S)erial Output

Änderungen in diesem Menüpunkt werden erst durch einen Systemreset wirksam (Aus- und Wiedereinschalten der Antenne). Je nach vorgenommener Änderung müssen Sie dann gegebenenfalls eine andere Baudrate / ein anderes Textdokument zum Monitoraufruf verwenden (Abschnitt 7.2.1 auf Seite 28).


```
S:0021
                                   Code: 00000000
         X:+0004
                                                    Read:
                                                            0:
Frx[/Hz]:66920 Ftx[/Hz]:127950
U[/mV]:24200 I[/mA]: 240 T[Grd.C]:+28
                                             E: 0000 N:
                                                           0
    (B)audrate:
                                                   9600
    (P)rocedure
                                                  3964R
    (0)rder of Data Transfer (0= HiByte first):
                                                      0
                                                   1fff
    (T)elegram Content Mask [0..1FFF]:
    (D) isplay Telegram Content
    (C)har-Delaytime
                                 [1..220ms]:
                                                    220
    (A)ck-Delaytime (3964R)
                                 [1.1680ms]:
                                                   1680
    Co(n)tinous Telegrams
    (S)erial Data Period
                                 [1..1000ms]:
                                                      8
    (Q)uit Menue
```

Durch Eingabe von 🗉 wechseln Sie zwischen 9600 und 19200 Baud. Über 🖸 wählen Sie, ob das höchste Byte zuerst oder zuletzt ausgegeben werden soll. Bei Zusammenschaltung mit einer Siemens SPS muss dieser Parameter auf 0 (High Byte first) stehen.

Mit 🖻 wählen Sie die gewünschte Prozedur – 3964R, transparent oder Monitor only. Falls die Prozedur Monitor only eingestellt ist, können Baudrate und Procedure gewählt werden. Dies ist immer dann sinnvoll, wenn die serielle Ausgabe nur zum Parametrieren benötigt wird und die Datenausgabe über CAN oder Profibus® erfolgt. Bei der 3964R-Prozedur ist zusätzlich noch die Quittungsverzugszeit (A) einstellbar.

Mit 🔟 kann die Zusammenstellung des Ausgabetelegramms beeinflusst werden.

Nach den in Tabelle 8 "Datenwörter eines Telegramms bei 21 Byte Länge" auf Seite 21 angegebenen Werten können Sie durch hexadezimale Addition die gewünschten Bestandteile Ihres Telegramms T festlegen. Die Reihenfolge der Parameter kann nicht beeinflusst werden. Sie entspricht immer der Reihenfolge in der Tabelle.

Beispiel Sie möchten nur den Code ausgegeben haben:

Addieren Sie gemäß der Tabelle die Wertigkeit 0x0000.0004 für die oberen 16 Codebits und 0x0000.0008 für die unteren Codebits sowie die Wertigkeit 0x0000.0001 für STX. Geben Sie also D ein.

Mit Hilfe von (D)isplay Telegram Content können Sie das generierte Telegramm überprüfen (siehe Bild 18). Im dargestellten Fall hat die Maske den Wert 0x00001FFF und die Telegrammlänge beträgt 21. Durch Drücken einer beliebigen Taste gelangen Sie wieder zurück ins Menü Serial Output.

Bild 18 Ausgabe bei (D)isplay Telegram Content

```
S:0021
         X:+0006
                                   Code: 00000000 Read:
                                                            0:
0
    STX
                1 Bytes from Position: 1
    Dumm∨
                2 Bytes from Position: 2
    CODE_H(L)
                2 Bytes from Position: 4
               2 Bytes from Position: 6
2 Bytes from Position: 8
    CODE_L(H)
    SUM_1
    DIF_X
                2 Bytes from Position: 10
                1 Bytes from Position: 12
    Vcc
    Current
                1 Bytes from Position: 13
    Temp.
CodesRd
                1 Bytes from Position: 14
                1 Bytes from Position: 15
               2 Bytes from Position: 16
2 Bytes from Position: 16
2 Bytes from Position: 18
    Rx-Freq.
    Tx-Freq.
    STATUS
                2 Bytes from Position: 20
    (Q)uit Menue
```

Der Parameter (C) har Delaytime ist bei der Prozedur 3964R die sogenannte Zeichenverzugszeit (siehe Anhang, Abschnitt 11.2 auf Seite 45) und bei der transparenten Prozedur die Timeout-Zeit für eingehende Zeichen (siehe Anhang, Abschnitt 11.3 auf Seite 46).

Mit wird eine permanente Ausgabe gemäß der eingestellten (S)erial Data Period aktiviert (1), oder die Ausgabe erfolgt nur, wenn ein Transponder im Feld dekodiert wird (0).

Gerätebeschreibung HG G-98760-C | Deutsch, Revision 05 | Stand: 25.09.2023

7.2.2.5 C(A)N-Parameters

In diesem Menü können die Parameter für den CAN-Bus eingestellt werden. Vor Benutzung des CAN-Bus muss dieser durch Eingabe von 🖸 aktiviert werden.

Bild 19 Menü: C(A)N-Parameters

SR =	= 00:	NO	ERROR	/	/	/	/		
	(C)AN activ	/e					NO		
	E(X)tended	CAN				STAN	DARD		
	(I)dentifie	er: 1	TX/RX	[0204	7] :		10		
	(A)-Identif	ier	: ТХ	[0204]	7]:		Θ		
	(B)-Identif	ier	: ТХ	[0204]	7]:		Θ		
	(D)-Identif	ier	: ТХ	[0204	7] :		7		
	CAN-Ba(u)dr or	ate	[20,50	,125,250	,500,1000	0 kB]::	1000		
	B(R)P E	Baudi	rate Pi	rescaler	[063]:		Θ		
	(S)JW S	Sync	Jump \	√idth	[03]		Θ		
	Tseg(1)	-			[215]		6		
	Tseg(2)				[17]	:	1		
	Co(n)tinous	5 Te	legrams	S			1		
	CAN on Re(m	1)ote	e Reque	est			Θ		
	Data (P)eri	od		[11000	ms]:		8		
	(Q)uit Menu	ie							

Durch Eingabe von 🗵 können Telegramme als Standard-Frames gemäß CAN 2.0A oder als Extended-Frames gemäß CAN 2.0B erzeugt werden. Entsprechend ist der Identifier (die CAN Adresse) als 11 Bit Wert (0-2047) oder als 29 Bit Wert (0-536870911) eingebbar.

Der mit i einstellbare Identifier bezieht sich auf gesendete Frames für das Message Object 1 bzw. auf empfangene Frames für das Message Object 5 für den Referenztransponder. Der mit i einstellbare Identifier bezieht sich auf das Message Object 2, B und entsprechend auf die Message Objects 3 und 4. Durch Eingabe von 0 wird das jeweilige Message Object deaktiviert.

Mit 🛄 kann eine aus sechs verschiedenen Standard Baudraten ausgewählt werden.

Die einzelnen Komponenten des Bit Timing Registers können einzeln verändert werden.

Mit wird eine permanente Ausgabe gemäß der im Menü Time&Code (Abschnitt 7.2.2.2 auf Seite 31) eingestellten Clock for Sampling aktiviert (1), oder die Ausgabe erfolgt nur wenn ein Transponder im Feld dekodiert wird (0).

Durch M wird der Remotebetrieb freigegeben. Es werden dann (unabhängig von der Einstellung Continous Telegrams) keine Telegramme selbständig erzeugt, sondern nur noch Remote Frames mit der entsprechenden Adresse beantwortet.

Mit P wird die Ausgaberate der CAN-Telegramme gewählt.

In der Kopfzeile des Menüs wird der Inhalt des CAN-Statusregisters ausgegeben. Die dort möglichen Angaben können einer einfachen Diagnose dienen und sind im oben genannten Handbuch auf Seite 23-7 erläutert.

7.2.2.6 P(r)ofibus-Parameters

In diesem Menü können die Profibus® Parameter eingestellt werden.

ACHTUNG

Unerwartete Antennen-Resets

Bei aktiviertem Bus erfolgt bei Übertragungsfehlern ein Reset der Antenne. Auch ein nicht vorhandener Bus kann dann als Übertragungsfehler erkannt werden.

► Falls der Profibus[®] nicht angeschlossen ist oder es sich um eine Antenne ohne Profibus[®] handelt -> Profibus[®] in der Antenne deaktivieren.

Bild 20 Menü: P(r)ofibus-Parameters

Byte # 0 1 2 3 4	Master-Input 00 00 00 00 00	Profibus-Status: PB_OFFLINE	
5	00		
6	e7		
7	18		
8	00	(P)rofibus active	YES
9	00	(A)ddress: [0125]:	2
10	00	(O)rder of Data Transfer (O= HiByte first):	Θ
11	00		
12	00	(Q)uit Menue	
13	00		
14	00		
15	00		
Byte # 0	Master-Output 00		

Im linken Drittel des Bildschirms werden die zum Master gesendeten Bytes bzw. das vom Master gesendete Byte dargestellt. Zur Bedeutung der Bytes siehe Tabelle 16 auf Seite 25.

In der Kopfzeile ist der aktuelle Profibusstatus dargestellt. Er kann folgende Werte annehmen:

Tabelle 20 Mögliche Profibus® Statusmeldungen

Profibus [®] Statusmeldungen	
NO_ERROR	Profibus® inaktiv bzw. ohne Fehler
DPS2_INI_ERROR	Diese Meldungen zeigen eine nicht bestückte
SPC_HW_ERROR	bzw. fehlerhafte Profibus® Hardware an
USER_IO_DATA_LEN	
BUF_LEN_ERROR	Es wurden unzulässige Bufferlängen im Master spezifiziert. Verwenden Sie die mitglieferte GSD- Datei (siehe Anhang, Abschnitt 11.4 auf Seite 47)
PB_OFFLINE	Kein Kontakt zum Master

Mit 🖻 können Sie den Profibus® aktivieren und deaktivieren. Er wird dann mit der unter 🛆 eingegebenen Slave-Adresse initialisiert.

Mit 🖸 wählen Sie, ob das jeweils höchste Byte zuerst oder zuletzt ausgegeben wird (siehe auch Tabelle 16 auf Seite 25).

Mit 🖸 verlassen Sie dieses Menü und gelangen zurück ins Grundmenü. Sie sollten dann ggfs. veränderte Parameter speichern.

<u>GÖTTING</u>

Gerätebeschreibung HG G-98760-C | Deutsch, Revision 05 | Stand: 25.09.2023

7.2.2.7 (W)rite Transponder

Geben Sie nach Aufruf dieses Menüpunktes einen bis zu 5-stelligen Hex-Code ein. Positionieren Sie einen RW-Transponder im Nennabstand im Antennenfeld und starten Sie mit sim die Programmierung. Alternativ können Sie auch das optionale Transponder-Programmiergerät der Götting KG verwenden, siehe Tabelle 4 auf Seite 10.

7.2.2.8 CS(V)

Für Diagnosezwecke kann die Ausgabe der Werte Code, Us sowie der Zustände Transponder im Feld, Code OK (siehe auch Tabelle 9 auf Seite 21), der Anzahl der Codelesungen und eines Telegramm-Zählers im **CSV-Format** (Comma Seperated Values; speziell für den Import in Tabellenkalkulationen formatierte Textdatei) gestartet werden. Die Ausgabe erfolgt mit 38.400 Baud, 8 Bit und gerader Parität, bis sie mit Abeendet wird. Nach dem Abbruch wird ein Reset ausgelöst und die Antenne befindet sich wieder im Grundzustand (nicht Monitormodus) mit den abgespeicherten Parametern.

Die CSV-Ausgabe kann z. B. unter Einsatz des Programms HyperTerminal[®] (siehe auch Abschnitt auf Seite 27) abgespeichert werden. Benutzen Sie dazu im Menü Übertragung die Funktion Text aufzeichnen ... und geben Sie einen Dateinamen an (sinnvollerweise sollte er die Dateiendung .csv haben, damit die Tabellenkalkulation die Datei später von sich aus erkennt). Nachdem die Datei aufgezeichnet und unter HyperTerminal[®] geschlossen wurde, kann sie in eine Tabellenkalkulation (z. B. Microsoft[®] Excel[®]) eingelesen werden.

Beim Öffnen der Datei fragt die Tabellenkalkulation einige Optionen ab. Geben Sie dort an, dass es sich um durch Komma getrennte Werte handelt. Anschließend können die Daten in Diagrammform aufbereitet oder als native Tabellenkalkulations-Datei zur Weitergabe gespeichert werden.

7.2.2.9 (U)pdate Firmware

Dieser Menüpunkt bietet die Möglichkeit, ein Softwareupdate durchzuführen, ohne die Betriebsspannung des Gerätes ab- und wieder anzuklemmen. Sie müssen vorher das Updateprogramm wie in Abschnitt 7.3 auf Seite 38 beschrieben installieren.

Betätigen Sie dann im Grundmenü die Taste 🖪. Führen Sie dann die folgenden Schritte durch.

- Öffnen Sie das Updateprogramm (HEX Flasher).
- Wählen Sie den COM-Port, mit dem die Antenne derzeit mit Ihrem PC verbunden ist.
- Wählen Sie das zu programmierende HEX-File (erhalten Sie auf Anfrage von der Götting KG).
- Gehen Sie jetzt zu Hyperterm zurück und betätigen Sie eine Taste.
- Innerhalb der nächsten 20 sec. schließen Sie in Hyperterm den COM-Port über das Icon 3, wechseln in das Updateprogramm und starten die Programmierung.

Nach beendeter Programmierung wechseln Sie wieder in Hyperterm, warten 10 sec. und verbinden sich wieder mit dem COM-Port der Antenne (z. B. über das Icon 🖻). Starten Sie dann den Monitormodus wieder (siehe auch 7.2.1 auf Seite 28).

7.3 Softwareupdate (Antennensoftware)

Bei den Antennen ist es möglich, bei Bedarf mit einem PC ein Softwareupdate der integrierten Auswerter über die serielle Schnittstelle durchzuführen. Nach dem Einschalten prüft der integrierte Lader ca. 10 Sekunden lang, ob ein Download erfolgen soll. Wenn nicht, startet er danach das normale Betriebsprogramm.

Innerhalb dieser 10 Sekunden eingehende Daten werden auf Gültigkeit geprüft.

Zum Update kann nur das nachfolgend beschriebene Updateprogramm verwendet werden!

7.3.1 Einrichten des Updateprogramms

Bei dem Programm zum Update der Antennensoftware handelt es sich um eine 32-Bit-Anwendung für Microsoft[®] Windows[®]. Sie bekommen dieses Programm auf Anfrage zugesendet. Richten Sie Ihre Anfrage per E-Mail, Telefon, Fax oder Brief an die auf dem Titelblatt genannte Adresse.

Das Programm muss nicht installiert werden. Es reicht, es auf die Festplatte des PCs zu kopieren und dort auszuführen. Gehen Sie dazu wie folgt vor:

- Öffnen Sie den Windows Explorer und navigieren Sie zu dem Verzeichnis, an dem Sie die erhaltenen Dateien abgelegt haben, z. B. im Windows Programme Verzeichnis.
- Bei Windows-Versionen vor Windows XP muss sichergestellt werden, dass die beiden Einstellungsdateien beschreibbar sind. Markieren Sie dazu die Dateien ST10-Flasher.ini und Command.log. Rufen Sie dann im Kontext-Menü des Explorers die Funktion Eigenschaften auf und deaktivieren Sie ggf. das Attribut Schreibgeschützt.

7.3.2 Durchführen eines Softwareupdates

Während der Durchführung des Software-Updates dürfen keine anderen Programme die genutzte serielle Schnittstelle (COM-Port) belegen. Trennen Sie dazu ggf. in Ihrem Terminalprogramm (z. B. Hyperterm) die Verbindung zur Antenne.

Verbinden Sie die Antenne mit Ihrem PC. Bei Antennen-Varianten mit RS422-Schnitttelle (HG 98760ZC/XC) benötigen Sie dafür einen geeigneten Schnittstellenwandler (nicht im Lieferumfang; siehe auch Hinweis auf Seite 27 oben).

Um das Programm zu starten, führen Sie durch einen Doppelklick die Datei ST10-Flasher.exe in dem oben beschriebenen Verzeichnis aus.

Bild 21 Updateproaramm: Die Bec	ienelemente
---------------------------------	-------------

Hex-file Op	en	1 Auswahl der zu übertragenden Hex-Datei
Settings COMPot COM2 COM2 COM3 COM4 COM4	Baudrate	2 Auswahl der seriellen Schnittstelle und Baudrate
Send Bootstrap Comand		3 Diese Option muss immer aktiviert sein
		4 Start des Programmiervorgangs
Program		5 Statusmeldungen
GOTTING	Close	~
		6 Beenden des Programms

Starten Sie den Programmiervorgang, indem Sie die Antenne einschalten und danach innerhalb von 10 Sekunden auf Program klicken. Es erfolgt ein Geräte-Reset und nach kurzer Zeit wird die Datei übertragen.

Bild 22 Updateprogramm: Programmiervorgang

Nach dem erfolgreichen Programmieren können Sie das Programm schließen (Close). Der Auswerter arbeitet nun mit dem neuen Programm.

Wartung

Das System ist weitgehend wartungsfrei. Die Wartung beschränkt sich auf:

- ٠ Die Sichtprüfung der Antennen (fester Sitz aller Schrauben, Kabel und Stecker ordnungsgemäß befestigt)-
- Eventuelles Reinigen der Belüftungslöcher. ٠

Protokollieren Sie regelmäßig die Stromaufnahme und Spannungsversorgung jeder Antenne. Sie können diese Werte in jedem Menü des Monitorprogramm ablesen.

Führen Sie gegebenenfalls ein Update der Betriebssoftware nach der beschriebenen Prozedur durch (Abschnitt 7.3 auf Seite 38). Sie können Datum und Version der aktuellen Antennensoftware im Hauptmenü ablesen.

Im Folgenden finden Sie eine tabellarische Auflistung möglicher Fehler. Zu jedem Fehler wird eine Beschreibung auftretender Symptome gegeben. In der dritten Spalte finden Sie eine Anleitung, wie Sie den Fehler eingrenzen und idealerweise auch beheben können.

Sollten Sie nicht in der Lage sein, einen Fehler zu beheben, nutzen Sie bitte die Tabelle, um ihn möglichst genau einzugrenzen (Art der Fehlfunktion, Zeitpunkt des Auftretens), bevor Sie sich an uns wenden.

Fehler	Mögliche Ursache(n)	Mögliche Diagnose/Behebung
Keine Systemfunktion Trotz im Erfassungsbe- reich befindlichen Trans- ponders keine serielle Ausgabe	 Zu geringe Spannungsversor- gung. 	Messen Sie die Spannung an den entsprechend bezeichneten Klem- men im Klemmkasten.
Keine Kontaktaufnahme möglich; es werden unver- ständliche Zeichen gesen- det.	 RS 422 T+(R+) mit RS 422 T- (R-) vertauscht. Signalmasse nicht angeschlos- sen bei zu hoher Potentialdiffe- renz zwischen Antenne und Datenempfänger. Falsche Übertragungsparameter eingestellt. Falsche Übertragungsprozedur gewählt. 	 Überprüfen Sie die entsprechen- den Verbindungen. Verbinden Sie die Signalmassen. Wählen Sie nur 9600 oder 19200 Baud, 8 Bit, Parität gerade. Stellen Sie mit dem PC und dem Systemmonitor die richtige Pro- zedur etc. ein.
Ungenaue Werte bei tiefen Temperaturen.	 System funktioniert bei tiefen Außentemperaturen erst nach einer gewissen Anlaufzeit zufrie- denstellend. Zu geringe Heizleistung, lose Kabelverbindung. 	Warten Sie, bis sich das System auf- gewärmt hat (ca. 60 Minuten bei - 20 ^o C). Messen Sie die Spannung von 24 V an den entsprechenden Klemmen (+24V Heating).
Ausgangswerte nicht reproduzierbar; man- gelnde Genauigkeit.	Störfrequenzen	Überprüfen Sie den Wert S im Moni- tormodus. Wenn dieser nicht unter ca. 50 liegt, könnten Störfrequenzen im Bereich 64 kHz liegen.
Keine Positionierimpulse.	 Transponder defekt Lose Kabelverbindung Störfrequenzen Antenne defekt 	Überprüfen sie den Transponder (z. B. mit dem Programmiergerät, s. Tabelle 4 auf Seite 10)

Tabelle 21 Fehlersuche

10 Technische Daten

10.1 Antenne

 Tabelle 22
 Technische Daten Antenne HG G-98760-C

Antenne HG G-98760-C	
Gehäuse	siehe Bild 8 auf Seite 16
Gewicht	ca. 6 kg
wirks. Antennenbereich	280 x 110 mm (Funktionsbereich Positionierung)
Spannungsversorgung	24 V ±10 %
Stromaufnahme	ca. 600 mA, während Transponder-Programmie- rung max. 2 A für 500 ms, ca 2 A Heizung
erforderliche Absicherung	Versorgung (Pin 1) 1 A trägeHeizung (Pin 3) 3 A träge
Temperatur (Lagerung und Betrieb)	-25 bis +70° C mit Heizung Aufwärmzeit: ca. 60 min bei -20° C mit Heizung Einschalttemperatur Heizung: 0 bis 5° C
Mech. Belastbarkeit	5 g 11 ms / 2 g 10 bis 55 Hz
Einbauvorschrift	siehe Bild 1 auf Seite 11
Schutzart	IP 67
Anschluss – HG G-98760ZC/WC – HG G-98760YC/XC	 12-polige M3 Einbaubuchse 3 x 12-polige M23 Einbaubuchse
Leseabstand (Abstand Trans- ponder -> Unterseite Lesean- tenne)	In Fahrtrichtung im Bereich von max. ±40mm quer zur Antennenmitte: – Siehe Angaben bei den Transpondern in Tabelle 3 auf Seite 9
Positioniergenauigkeit	±3 mm auf der Mittelachse
Wiederkehrgenauigkeit	3 mm
Max. Überfahrgeschw.	3 m/s
Ausgabe seriell (RS422 bzw. RS232)	Die Ausgabe erfolgt mit 9,6 bzw. 19,2 kBd. Der Telegramminhalt ist konfigurierbar. Als Protokoll kann zwischen der Prozedur 3964R oder "transparent" gewählt werden
CAN-Bus (HG G-98760ZC/WC)	nach ISO/DIS 11898 Identifier, Datenrate, Basic/ Extended CAN; über serielle Schnittstelle konf.
Profibus® (HG G-98760YC/XC)	Nach DIN 19245 / EN 50170 Autom. Baudratensuche, unterstützte Baudraten: 9,6 kBd, 19,2 kBd, 93,75 kBd, 187,5 kBd, 500 kBd, 1,5 MBd, 3 MBd, 6 MBd, 12 MBd LED für Profibus®-Zustand "Datenaustausch"
Ausgabe Positionierpuls	20 mA Stromquelle, potentialgetrennt

Gerätebeschreibung HG G-98760-C | Deutsch, Revision 05 | Stand: 25.09.2023

10.2 EMV

Tabelle 23 EMV-Prüfung

Prüfung von Erfüllte Prüfnorm		
Störa	aussendung	
	Funkstörstrahlung	EN 55 022 Klasse A
Stör	festigkeit	
	Gehäuse	
	Elektromagnetisches HF-Feld, ampli- tudenmoduliert	EN 61000-4-3
	Entladung statischer Elektrizität	EN 61000-4-2
	Signalanschlüsse	
	Hochfrequenz asymmetrisch	EN 61000-4-6 ^{*)}
	Schnelle Transienten	EN 61000-4-4
	Gleichstromanschlüsse	
	Hochfrequenz asymmetrisch	EN 61000-4-6 ^{*)}
	Stoßspannungen	EN 61000-4-5
*) Ev STAF	ventuell Ferritring für Kabeldurchmesser 12 RTEC 74271222)	mm verwenden (z. B. Würth

i

In stark gestörter Umgebung sollte ein abgeschirmtes Anschlusskabel verwendet werden!

Anhang

11.1 Physikalische Grundlagen

11.1.1 Feldverlauf des Energiefeldes

Bild 23 Feldverlauf des Energiefelds f_c =128 kHz

11.1.2 Feldverlauf des Transponderrückwirkungssignals

11.1.3 Induzierte Spannungen in Summen- und Differenzantenne

11.2 Prozedur 3964R

Zur Rechnerkopplung Antenne <-> SPS kann ein 3964R-Protokoll verwendet werden. Da die Datenausgabe von der Antenne zyklisch erfolgt, ergeben sich bei der Implementierung der 3964R einige Vereinfachungen. Im Folgenden wird die Prozedur durch Zustandsdiagramme beschrieben.

Es sind folgende Einstellungen zu beachten:

- Transpondersystem hat niedere Priorität
- die Datenübertragung hat die Einstellung 1 Startbit, 8 Datenbit, Parity even, 1 Stoppbit, Baudrate 9600 Baud (default) oder 19200 Baud.

11.2.1 Datenrichtung Antenne -> SPS

In dieser Richtung werden zyklisch Antennendaten übertragen. Der Datensatz beginnt immer mit einem "="-Zeichen (hex 0x3d). Die Zykluszeit ist parametrierbar, sie sollte ein ganzzahliger Teil – oder ein Vielfaches davon – der Transpondercode Übertragung dauern. In diesem System ist die Übertragungsdauer des Transpondercodes 8 ms. Die Mindestzykluszeit ergibt sich aus der Telegrammdauer und hängt somit von der Baudrate und dem gewählten Telegramminhalt ab.

In den Zustandsdiagrammen steht

- T_ZVZ für die programmierbare Zeichenverzugszeit und
- T_QVZ für die programmierbare Quittungsverzugszeit.

Bild 26 Zustandsdiagramm Prozedur 3964R; Antenne -> SPS

11.2.2 Datenrichtung SPS -> Antenne

In dieser Richtung werden nur bei Bedarf Befehle übertragen (z. B. wenn der Referenztransponder eingeschaltet wird). Damit sich diese Kommandos gegenüber der häufigen zyklischen Datenausgabe der Antenne durchsetzen können, besitzt die 3964R der Antenne eine niedrige Priorität (siehe Bild 26).

11.3 Prozedur "transparent"

Zur Rechnerkopplung Antenne <-> SPS kann ein transparentes Protokoll verwendet werden. Es sind folgende Einstellungen für die Datenübertragung zu beachten:

 1 Startbit, 8 Datenbit, Parity even, 1 Stoppbit, Baudrate 9600 Baud (default) oder 19200 Baud.

Gerätebeschreibung HG G-98760-C | Deutsch, Revision 05 | Stand: 25.09.2023

11.3.1 Datenrichtung Antenne -> SPS

In dieser Richtung werden zyklisch Antennendaten übertragen. Die Zykluszeit ist parametrierbar, sie sollte ein ganzzahliger Teil – oder ein Vielfaches davon – der Transponder-Codeübertragung dauern. Die Mindestzykluszeit ergibt sich aus der Telegrammdauer und hängt somit von der Baudrate und dem gewählten Telegramminhalt ab.

Der Datensatz beginnt immer mit einem "="-Zeichen (hex 0x3d). Danach folgen die im entsprechenden Menü ausgewählte Parameter. Das Telegramm wird mit einem 8 Bit Prüfzeichen über alle Zeichen (inkl. Startzeichen) abgeschlossen. Für das Prüfzeichen werden alle Zeichen exklusiv-verodert. Die Zeichen werden ohne Verzögerung gesendet.

11.3.2 Datenrichtung SPS -> Antenne

In dieser Richtung werden bei Bedarf Befehle übertragen. Jeder Befehl muss mit einem "="-Zeichen beginnen (hex 0x3d). Das Befehlsformat wird in Tabelle 10 "Liste der Systemkommandos" auf Seite 22 beschrieben. Das Telegramm muss mit einem 8 Bit Prüfzeichen über alle Zeichen (inkl. Startzeichen) abgeschlossen werden. Die Zeichen müssen innerhalb der parametrierbaren Zeichenverzugszeit empfangen werden. Ansonsten wird das Telegramm verworfen.

11.4 GSD File (Antenne HG 98760YC/XC mit Profibus®)

Die jeweils aktuellste Version des GSD-Files können Sie sich von unserem Internet-Server unter folgender Adresse herunterladen.

https://www.goetting.de/komponenten/98760

Abbildungsverzeichnis

Bild 1	Befestigungsmöglichkeiten der Antenne	11
Bild 2	Diagramm: Inbetriebnahme-Protokoll / geringer Störpegel; gezeigt wird der Verlauf der Summenspannung über die Strecke	13
Bild 3	Diagramm: Inbetriebnahme-Protokoll / ungestörte Transponderdecodierung	13
Bild 4	Diagramm: Inbetriebnahme-Protokoll / hoher Störpegel; gezeigt wird der Verlauf der Summenspannung über die Strecke	14
Bild 5	Diagramm: Inbetriebnahme-Protokoll / gestörte Decodierung (Funktion noch vorhanden)	15
Bild 6	Diagramm: Inbetriebnahme-Protokoll / durch Noise und zu niedrige Schwel- le ausgelöster POSI-Puls	15
Bild 7	Positionierantenne HG G-98760ZC/WC	16
Bild 8	Zeichnung Antenne HG G-98760ZC/WC (mit Gehäuseabmessungen)	16
Bild 9	Zeichnung Antenne HG G-98760XC/YC (mit Gehäuseabmessungen und Foto des Abschlusswiderstands)	18
Bild 10	Gleichung: Minimale Updaterate	20
Bild 11	Anschlussmöglichkeiten Positionierimpuls PosiPuls	23
Bild 12	Interface HG G-06150-A zur Hutschienenmontage	26
Bild 13	Grundmenü des Monitorprogramms	30
Bild 14	Menü: (T)ime & Code	31
Bild 15	Menü: (F)requency & Antenna Tuning	32
Bild 16	Gleichung: Berechnung der Empfangsfrequenz	33
Bild 17	Menü: (S)erial Output	33
Bild 18	Ausgabe bei (D)isplay Telegram Content	34
Bild 19	Menü: C(A)N-Parameters	35
Bild 20	Menü: P(r)ofibus-Parameters	36
Bild 21	Updateprogramm: Die Bedienelemente	39
Bild 22	Updateprogramm: Programmiervorgang	39
Bild 23	Feldverlauf des Energiefelds f _c =128 kHz	44
Bild 24	Feldverlauf des Transponderrückwirkungssignals f_c =64 kHz	44
Bild 25	Induzierte Spannung in Summen- und Differenzantenne	45
Bild 26	Zustandsdiagramm Prozedur 3964R; Antenne -> SPS	46
Bild 27	Zustandsdiagramm Prozedur 3964R; SPS -> Antenne	46

Tabellenverzeichnis

Tabelle 1	Gefahrenklassen nach ANSI Z535.6-2006	5
Tabelle 2	Variantenübersicht HG G-98760-C	7
Tabelle 3	Notwendiges Zubehör	9
Tabelle 4	Optionales Zubehör	10
Tabelle 5	Kontaktbelegung der 12-poligen Buchse (CAN-Bus)	17
Tabelle 6	Kontaktbelegung der 12-poligen Profibusverbinder (doppelt vorhanden; X1 und X2, siehe Bild 9 auf Seite 18)	19
Tabelle 7	Kontaktbelegung des 12-poligen Steckers X3 (siehe Bild 9 auf Seite 18) für die Antennenversorgung (Profibusversion)	19
Tabelle 8	Datenwörter eines Telegramms bei 21 Byte Länge	21
Tabelle 9	Mögliche Systemstatus-Meldungen	21
Tabelle 10	Liste der Systemkommandos	22
Tabelle 11	Aufbau des CAN Message Objects 1	24
Tabelle 12	Aufbau des CAN Message Objects 2	24
Tabelle 13	Aufbau des CAN Message Objects 3	24
Tabelle 14	Aufbau des CAN Message Objects 4	24
Tabelle 15	Aufbau des CAN Message Objects 5	25
Tabelle 16	Profibus® Input Bytes	25
Tabelle 17	Ausgabeformat bei Verwendung des seriell/parallel Interfaces	26
Tabelle 18	Einstellungen im Terminalprogramm	27
Tabelle 19	Bedeutungen der Systemvariable (Monitorprogramm)	30
Tabelle 20	Mögliche Profibus® Statusmeldungen	36
Tabelle 21	Fehlersuche	41
Tabelle 22	Technische Daten Antenne HG G-98760-C	42
Tabelle 23	EMV-Prüfung	43

Stichwortverzeichnis

Numbers

3964R......45

А

Abschlusswiderstand	
Antenne	
Gehäuseabmessungen	16
Schnittstellen	20
Steckerbelegung	
Technische Daten	
Ausgabeformat	7
Ausgabetelegramm	
5 5	

С

23 CAN	3
-----------	---

Е

Empfangsfrequenz	
Berechnung der	
EMV	
Energiefeld	
-	

F

Fehlersuche	
Firmennamen	51
Funktionsbeschreibung	7

G

GSD	File	7

Н

Haftungsausschluss	
HG	
06150	
70633	
70652	
70653	
71325	
81840	
98760	
HW DEV00095	
HW DEV00098	

I

Inbetriebnahme	12
Interface	26

. _

LED	18
Lieferumfang	9

Μ

L

Markenzeichen	
Monitorprogramm	
Bedienung des	

Ρ

Positionierimpuls	23
Profibus	
Programmiergerät	
Prozedur "transparent"	
Prozedur 3964R	

S

Schnittstellen	
CAN	23
Positionierimpuls	23
Profibus	25
Software	27
Softwareupdate	
Symbole	6
Systemkommandos	
Systemmonitor	
Systemvariable	

Т

Technische Daten	
Telegramm	20
Terminalprogramm	27
transparent	46
Transponder	
Transponderrückwirkungssignal	

U

Updaterate	
Urheberrechte	51

W

```
Wartung......40
```

Ζ

Zubehör	
notwendiges	9
optionales	10

15 Hinweise

15.1 Urheberrechte

Dieses Werk ist urheberrechtlich geschützt. Alle dadurch begründeten Rechte bleiben vorbehalten. Zuwiderhandlungen unterliegen den Strafbestimmungen des Urheberrechts.

15.2 Haftungsausschluss

Die angegebenen Daten verstehen sich als Produktbeschreibungen und sind nicht als zugesicherte Eigenschaften aufzufassen. Es handelt sich um Richtwerte. Die angegebenen Produkteigenschaften gelten nur bei bestimmungsgemäßem Gebrauch.

Diese Anleitung ist nach bestem Wissen erstellt worden. Der Einbau und Betrieb der Geräte erfolgt auf eigene Gefahr. Eine Haftung für Mangelfolgeschäden ist ausgeschlossen. Änderungen, die dem technischen Fortschritt dienen, bleiben vorbehalten. Ebenso behalten wir uns das Recht vor, inhaltliche Änderungen der Anleitung vorzunehmen, ohne Dritten Kenntnis geben zu müssen.

15.3 Markenzeichen und Firmennamen

Soweit nicht anders angegeben, sind die genannten Produktnamen und Logos gesetzlich geschützte Marken der Götting KG. Alle anderen Produkt- oder Firmennamen sind gegebenenfalls Warenzeichen oder eingetragene Warenzeichen bzw. Marken der jeweiligen Firmen.

Führung durch Innovation

Götting KG Celler Str. 5 | D-31275 Lehrte Tel. +49 (0) 5136 / 8096 -0 Fax +49(0) 5136 / 8096 -80 info@goetting.de | www.goetting.de

www.goetting.de